High-resolution real-time three-dimensional acoustic imaging system with a reflector

2007 ◽  
Vol 34 (3) ◽  
pp. 133-144 ◽  
Author(s):  
Hirofumi Taki ◽  
Toru Sato
1980 ◽  
Vol 2 (4) ◽  
pp. 313-323 ◽  
Author(s):  
Amin Hanafy ◽  
Mauro Zambuto

A two-step real time acoustic imaging system is presented. The system incorporates a novel acoustic image coupler which transfers an acoustical interference pattern from a water-bounded to an air-bounded surface with vibration amplitude amplification. An original technique termed step-biased real time holographic interferometry is used to convert the amplified mechanical vibration pattern, which carries all information about the insonified object, into a visual image with improved sensitivity.


1976 ◽  
pp. 319-320
Author(s):  
J. C. Taenzer ◽  
S. D. Ramsey ◽  
J. F. Holzemer ◽  
J. R. Suarez ◽  
P. S. Green

2011 ◽  
Vol 18 (4) ◽  
pp. 569-574 ◽  
Author(s):  
Masato Hoshino ◽  
Kentaro Uesugi ◽  
James Pearson ◽  
Takashi Sonobe ◽  
Mikiyasu Shirai ◽  
...  

An X-ray stereo imaging system with synchrotron radiation was developed at BL20B2, SPring-8. A portion of a wide X-ray beam was Bragg-reflected by a silicon crystal to produce an X-ray beam which intersects with the direct X-ray beam. Samples were placed at the intersection point of the two beam paths. X-ray stereo images were recorded simultaneously by a detector with a large field of view placed close to the sample. A three-dimensional wire-frame model of a sample was created from the depth information that was obtained from the lateral positions in the stereo image. X-ray stereo angiography of a mouse femoral region was performed as a demonstration of real-time stereo imaging. Three-dimensional arrangements of the femur and blood vessels were obtained.


2001 ◽  
Vol 7 (S2) ◽  
pp. 964-965
Author(s):  
Rodrigo Fernandez-Gonzalez ◽  
Arthur Jones ◽  
Enrique Garcia-Rodriguez ◽  
Davis Knowles ◽  
Damir Sudar ◽  
...  

Tissue heterogeneity and three-dimensionality are generally neglected by most traditional analytical microscopy methods in Biology. These often disregard contextual information important for understanding most biological systems. in breast cancer, which is a tissue level disease, heterogeneity and three dimensionality are at the very base of cancer initiation and clonal progression. Thus, a three dimensional quantitative system that allows low resolution virtual reconstruction of the mammary gland from serial sections, followed by high resolution cell-level reconstruction and quantitative analysis of the ductal epithelium emerges as an essential tool in studying the disease. We present here a distributed microscopic imaging system which allows acquiring and registering low magnification (1 pixel = 5 μm) conventional (bright field or fluorescence) images of entire tissue sections; then it allows tracing (in 3D) the ducts of the mammary gland from adjacent sections, to create a 3D virtual reconstruction of the gland; finally it allows revisiting areas of interest for high resolution (1 pixel = 0.5 μm) imaging and automatic analysis. We illustrate the use of the system for the reconstruction of a small volume of breast tissue.


2020 ◽  
Vol 20 (3) ◽  
pp. 139-144
Author(s):  
Cheng-Yang Liu ◽  
Tzu-Ping Yen ◽  
Chien-Wen Chen

AbstractThe three-dimensional (3-D) micro-scale surface imaging system based on the digital fringe projection technique for the assessments of microfiber and metric screw is presented in this paper. The proposed system comprises a digital light processing (DLP) projector, a set of optical lenses, a microscope, and a charge coupled device (CCD). The digital seven-step fringe patterns from the DLP projector pass through a set of optical lenses before being focused on the target surface. A set of optical lenses is designed for adjustment and size coupling of fringe patterns. A high-resolution CCD camera is employed to picture these distorted fringe patterns. The wrapped phase map is calculated by seven-step phase-shifting calculation from these distorted fringe patterns. The unwrapping calculation with quality guided path is introduced to compute the absolute phase values. The dimensional calibration methods are used to acquire the transformation between real 3-D shape and the absolute phase value. The capability of complex surface measurement for our system is demonstrated by using ISO standard screw M1.6. The experimental results for microfiber with 3 μm diameter indicate that the spatial and vertical resolutions can reach about 3 μm in our system. The proposed system provides a fast digital imaging system to examine the surface features with high-resolution for automatic optical inspection industry.


Sign in / Sign up

Export Citation Format

Share Document