acoustic image
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 44)

H-INDEX

12
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 313
Author(s):  
Chin-Feng Lin ◽  
Cheng-Fong Wu ◽  
Ching-Lung Hsieh ◽  
Shun-Hsyung Chang ◽  
Ivan A. Parinov ◽  
...  

In this paper, a low-power underwater acoustic (UWA) image transceiver based on generalized frequency division multiplexing (GFDM) modulation for underwater communication is proposed. The proposed transceiver integrates a low-density parity-check code error protection scheme, adaptive 4-quadrature amplitude modulation (QAM) and 16-QAM strategies, GFDM modulation, and a power assignment mechanism in an UWA image communication environment. The transmission bit error rates (BERs), the peak signal-to-noise ratios (PSNRs) of the received underwater images, and the power-saving ratio (PSR) of the proposed transceiver obtained using 4-QAM and 16-QAM, with perfect channel estimation, and channel estimation errors (CEEs) of 5%, 10%, and 20% were simulated. The PSNR of the received underwater image is 44.46 dB when using 4-QAM with a CEE of 10%. In contrast, PSNR is 48.79 dB when using 16-QAM with a CEE of 10%. When BER is 10−4, the received UW images have high PSNR values and high resolutions, indicating that the proposed transceiver is suitable for underwater image sensor signal transmission.


Acoustics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 723-734
Author(s):  
Duncan Tamsett

A human listening to monophonic sound through headphones perceives the sound to emanate from a point inside the head at the auditory centre at effectively zero range. The extent to which this is predicted by synthetic-aperture calculation performed in response to head rotation is explored. The instantaneous angle between the auditory axis and the acoustic source, lambda, for the zero inter-aural time delay imposed by headphones is 90°. The lambda hyperbolic cone simplifies to the auditory median plane, which intersects a spherical surface centred on the auditory centre, along a prime meridian lambda circle. In a two-dimensional (2-D) synthetic-aperture computation, points of intersection of all lambda circles as the head rotates constitute solutions to the directions to acoustic sources. Geometrically, lambda circles cannot intersect at a point representing the auditory centre; nevertheless, 2-D synthetic aperture images for a pure turn of the head and for a pure lateral tilt yield solutions as pairs of points on opposite sides of the head. These can reasonably be interpreted to be perceived at the sums of the position vectors of the pairs of points on the acoustic image, i.e., at the auditory centre. But, a turn of the head on which a fixed lateral tilt of the auditory axis is concomitant (as in species of owl) yields a 2-D synthetic-aperture image without solution. However, extending a 2-D synthetic aperture calculation to a three-dimensional (3-D) calculation will generate a 3-D acoustic image of the field of audition that robustly yields the expected solution.


2021 ◽  
Author(s):  
I. Mitrea ◽  
R. Cataraiani ◽  
M. Banu ◽  
S. Shirzadi ◽  
W. Renkema ◽  
...  

Abstract This Upper Cretaceous reservoir, a tight reservoir dominated by silt, marl, argillaceous limestone and conglomerates in Black Sea Histria block, is the dominant of three oil-producing reservoirs in Histria Block. The other two, Albian and Eocene, are depleted, and not the focus of field re-development. This paper addresses the challenges and opportunities that were faced during the re-development process in this reservoir such as depletion, low productivity areas, lithology, seismic resolution, and stimulation effectiveness. Historically, production from Upper Cretaceous wells could not justify the economic life of the asset. As new fracturing technology evolved in recent years, the re-development focused on replacing old, vertical/deviated one-stage stimulations low producing wells with horizontal, multi-stage hydraulic fractured wells. The project team integrated various disciplines and approaches by re-processing old seismic to improve resolution and signal, integrating sedimentology studies using cores, XRF, XRD and thin section analysis with petrophysical evaluation and quantitative geophysical analyses, which then will provide properties for geological and geomechanical models to optimize well planning and fracture placement. Seven wells drilled since end of 2017 to mid-2021 have demonstrated the value of integration and proper planning in development of a mature field with existing depletion. Optimizing the well and fracture placement with respect to depletion in existing wells resulted in accessing areas with original reservoir pressure, not effectively drained by old wells. Integrating the well production performance with tracer results from each fractured stage, and NMR/Acoustic images from logs enhanced the understanding of the impact of lithofacies on stimulation. This has allowed better assessment and prediction of well performance, ultimately improving well placement and stimulation design. The example from this paper highlights the value of the integrating seismic reprocessing, attribute analysis, production technology, sedimentology, cuttings analysis and quantitative rock physics in characterizing the heterogeneity of the reservoir, which ultimately contributed to "sweet spot" targeting in a depleted reservoir with existing producers and deeper understanding of the development potential in Upper Cretaceous. The 2017-2021 wells contribute to more than 30 percent of the total oil production in the asset and reverse the decline in oil production. In addition, these wells have two to four times higher initial rates because of larger effective drainage area than a single fracture well. Three areas of novelty are highlighted in this paper. The application of acoustic image/NMR logging to identify lithofacies and optimize fracturing strategy in horizontal laterals. The tracers analysis of hydraulic fracture performance and integration with seismic and petrophysical analysis to categorize the productivity with rock types. The optimization of fracture placement considering the changes of fluid and proppant volumes without compromising fracture geometries and avoiding negative fracture driven interactions by customized pumping approach.


2021 ◽  
Author(s):  
Jingying Wang ◽  
Bing Jia ◽  
Yang Zhang ◽  
Rui Wang ◽  
Jianglin Wu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jue Gao ◽  
Peiyi Zhu

In this paper, we propose an underwater target perception architecture, which adopts the three-stage processing including underwater scene acoustic imaging, local high-order statistics (HOS) space conversion, and region-of-interest (ROI) detection. After analysing the problem of the underwater targets represented by the acoustic images, the unique cube structure of the target in local skewness space is noticed, which is used as a clue to develop the ROI detection of underwater scenes. In order to restore the actual appearance of the ROI as much as possible, the focus processing is explored to achieve the target reconstruction. When the target size and number are unknown, using an uncertain theoretical template can achieve a better target reconstruction effect. The performance of the proposed method in terms of SNR, detection rate, and false alarm rate is verified by experiments with several acoustic image sequences. Moreover, target perception architecture is general and can be generalized to a wider range of underwater applications.


2021 ◽  
Author(s):  
Muhammad Nur Ali Akbar

Abstract Characterizing the naturally fractured reservoir in a mature field is always a challenging task due to minimal subsurface data availability and the technology was not as advanced as nowadays. Therefore, this paper is proposed to provide an alternative solution to identify the presence of the fractures, classify them into the fractured quality related flowability, and distribute them vertically within the well interval and propose a lateral distribution method for reservoir modeling. This research was conducted based on a case study of basement fractured carbonate reservoir in Hungary. I used more than twenty development wells which mainly drilled during 1980-2000's. The fractures presence is simply identified by using gamma-ray and density logs. The relative movement of density log to the defined fractured baselines was directed to classify the fracture quality within three groups of macro-fracture, micro-fracture, and host-rock. These groups were validated by core data and the acoustic image log from the newest drilled wells. Furthermore, I implemented the self-organizing map (SOM) for distributing the fracture group to other wells which having limited subsurface data. Since the fracture classes were distributed along the well depth interval, then the well test (DST) results and production flow test data validated the flowability of them. As a result, the main flow contribution intervals of the fracture can be well-recognized. The macro-fracture consistently indicates the fracture class showing the main contribution of the liquid flowrate more than 10 m3/d along the perforated intervals. The rock properties of this class have porosity range around 1-2% with permeability dominantly more than 100 mD. In contrast, the host-rock class is defined as a protolith/non-fractured rock. The porosity and permeability are extremely low (tight rock). This class does not give any flow contribution due to the high content of the marl or clay, the absence of the fracture, or the fractures had been re-cemented by calcite or quartz minerals. Meanwhile, the micro-fracture denotes the group of rock with porosity range around 2-10% and permeability average between 1-10 mD. In general, the flowrate coming from this fracture class was lower than 10 m3/d of liquid during the flow-test. As a novelty, this proposed approach with the machine learning of SOM-clustering effectively assists us to recognize the fracture presence and its quality along the well-depth interval from the absence of the advanced technologies of image logs and production logging (PLT) measurement. Also, the defined fracture class here can take a role as a fracture facies or rock typing in terms of 3D reservoir modeling and distributed laterally based on fault-likelihood attribute and fault zone defined by distance-to-fault.


Author(s):  
Priyadharsini Ravisankar

Underwater acoustic images are captured by sonar technology which uses sound as a source. The noise in the acoustic images may occur only during acquisition. These noises may be multiplicative in nature and cause serious effects on the images affecting their visual quality. Generally image denoising techniques that remove the noise from the images can use linear and non-linear filters. In this paper, wavelet based denoising method is used to reduce the noise from the images. The image is decomposed using Stationary Wavelet Transform (SWT) into low and high frequency components. The various shrinkage functions such as Visushrink and Sureshrink are used for selecting the threshold to remove the undesirable signals in the low frequency component. The high frequency components such as edges and corners are retained. Then the inverse SWT is used for reconstruction of denoised image by combining the modified low frequency components with the high frequency components. The performance measure Peak Signal to Noise Ratio (PSNR) is obtained for various wavelets such as Haar, Daubechies,Coiflet and by changing the thresholding methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dugin Kaown ◽  
Kang-Kun Lee ◽  
Jaeyeon Kim ◽  
Jeong-Ung Woo ◽  
Sanghoon Lee ◽  
...  

AbstractWe report unique observations from drilling and hydraulic stimulation at a depth of approximately 4.3 km in two Enhanced Geothermal System (EGS) wells at the Pohang EGS site, South Korea. We surveyed drilling logs and hydraulic stimulation data, simulated pore pressure diffusion around the fault delineated by seismic and drilling log analyses, conducted acoustic image logging through the EGS wells, observed significant water level drops (740 m) in one of the two EGS wells, and obtained hydrochemical and isotopic variation data in conjunction with the microbial community characteristics of the two EGS wells. We discuss the hydraulic and hydrochemical responses of formation pore water to a few key seismic events near the hypocenter. We focused on how the geochemistry of water that flowed back from the geothermal wells changed in association with key seismic events. These were (1) a swarm of small earthquakes that occurred when a significant circulation mud loss occurred during well drilling, (2) the MW 3.2 earthquake during hydraulic stimulation, and (3) the MW 5.5 main shock two months after the end of hydraulic stimulation. This study highlights the value of real-time monitoring and water chemistry analysis, in addition to seismic monitoring during EGS operation.


Author(s):  
Andriiva S. S.

Phonosemantics is a science with a thousand-year history, the attitude to which is ambiguous. Despite the fact that the main principle of this linguistic discipline about the motivation of the sound unit and the legitimacy of the phenomenon has been repeatedly questioned, although discussions on the universality and specificity of the phenomenon under study continue to this day. Language is the most powerful means of forming thought; social phenomenon that attest to such its main functions as informational, communicative, emotional, cognitive, epistemological, accumulative. All functions are usually implemented not in isolation, but in various combinations, because each statement in most cases is multifunctional. All functions ultimately work for communication, and that's in the sense that the communicative function is leading. Simultaneously with the acquisition of human language, it acquires knowledge about the world around, which significantly shortens and simplifies the path of cognition, protects a person from unnecessary mistakes. F. de Saussure explained the problem of the value of a linguistic sign, arguing that a linguistic sign combines a concept and an acoustic image and has two essential features: arbitrariness (unmotivated) and linearity (unfolding in time and one dimension). The sign is used to indicate an object outside it, to receive, store and transmit information. A sign acquires its meaning only in a certain system, because outside it is not a sign and means nothing. The palette of phonosemantic searches is inexhaustible, as each linguistic and literary-artistic direction in various manifestations considers the symbolism of images of phonemes, phonemes, morphemes, tokens, syntagms, texts. The scope of using linguistic units with existing phonosemantic features is different types of movement, sound, light phenomena, physiological and emotional states of both humans and animals.


Author(s):  
Xiaoping Huang ◽  
Fangyi Wen ◽  
Zhongxin Wei

In recent years, with the development of communication technology, embedded computing technology and sensor technology, it has become increasingly mature. Micro sensors with sensing, computing and communication capabilities have appeared in large numbers and developed rapidly, making wireless sensor networks widely used. People put forward higher requirements for the accuracy, reliability and flexibility of the image acquisition system. The image transmission system using analog technology not only has low image quality, but also has a serious waste of system resources, is not easy to form a complex network structure, and has poor functional scalability. In view of the actual needs of the current image acquisition and wireless transmission system, based on embedded technology, image acquisition, processing technology and network transmission technology, this paper proposes and designs a low-cost, high-reliability embedded image acquisition and wireless transmission system. Experimental tests show that this system has reasonable design, high video coding efficiency, good image continuity, stable operation, and basically realizes the display, storage and playback functions of the collected video data. Improve the transmission rate of the system and reduce the distortion caused by compression in terms of image compression. At the same time, it supports multiple image resolutions, frame rate options and multiple video formats, and the system’s transmission rate can adapt to the state of the network. This design fulfills the basic requirements of an embedded image acquisition system based on network technology, and provides a good foundation for the next development of a gigabit network-based image acquisition system.


Sign in / Sign up

Export Citation Format

Share Document