scholarly journals Assessment of Carbon Fibre Composite Fracture Fixation Plate Using Finite Element Analysis

2006 ◽  
Vol 34 (7) ◽  
pp. 1157-1163 ◽  
Author(s):  
Seyed H. Saidpour
Author(s):  
Steven Higbee ◽  
Sharon Miller

Abstract Insufficient engineering analysis is a common weakness of student capstone design projects. Efforts made earlier in a curriculum to introduce analysis techniques should improve student confidence in applying these important skills toward design. To address student shortcomings in design, we implemented a new design project assignment for second-year undergraduate biomedical engineering students. The project involves the iterative design of a fracture fixation plate and is part of a broader effort to integrate relevant hands-on projects throughout our curriculum. Students are tasked with (1) using computer-aided design (CAD) software to make design changes to a fixation plate, (2) creating and executing finite element models to assess performance after each change, (3) iterating through three design changes, and (4) performing mechanical testing of the final device to verify model results. Quantitative and qualitative methods were used to assess student knowledge, confidence, and achievement in design. Students exhibited design knowledge gains and cognizance of prior coursework knowledge integration into their designs. Further, students self-reported confidence gains in approaching design, working with hardware and software, and communicating results. Finally, student self-assessments exceeded instructor assessment of student design reports, indicating that students have significant room for growth as they progress through the curriculum. Beyond the gains observed in design knowledge, confidence, and achievement, the fracture fixation project described here builds student experience with CAD, finite element analysis, 3D printing, mechanical testing, and design communication. These skills contribute to the growing toolbox that students ultimately bring to capstone design.


2021 ◽  
Author(s):  
Faisal Sharaf Siddiqui

Femur fractures are caused by high energy trauma or by musculoskeletal impairments, such as osteoporosis. The presence of total hip replacement (THR) superior to a femoral mid-shaft fracture greatly complicates fixation and treatment. The most conventional fracture fixation method is internal fixation by metal plate and screws. However, metal being stiffer than bone, causes stress shielding and bone resorption. The goal of this study was to evaluate the performance of a less stiff carbon fibre epoxy plate as fracture fixation in an injured and healed femur. IR thermography validated by finite element analysis (FEA) was used to investigate the stress patterns of an injured and healed femur under an average cyclic loading of 800 N at an adduction angle of 7 degrees to simulate the single-legged stance phase of walking. The average stiffness of an injured femur with carbon/epoxy plate was 532.1 N/mm (static) and 625.3 N/mm (dynamic) respectively, that increased to 597.6 N/mm (static) and 697.9 N/mm (dynamic) for the metal plate. For the healed femur, the average stiffness increased from 1660.3 N/mm (static) and 2010.0 N/mm (dynamic) for the carbon/epoxy plate to 1704.4 N/mm (static) and 2070.4 N/mm (dynamic) for the metal plate. IR stress maps for carbon/epoxy and metal plate (injured femur) showed an overall difference of 29.2% for the anterior and posterior sides. This is the first study to assess experimentally and computationally the biomechanical behavior of injured and healed synthetic femur with two different plates construct.


2021 ◽  
Author(s):  
Faisal Sharaf Siddiqui

Femur fractures are caused by high energy trauma or by musculoskeletal impairments, such as osteoporosis. The presence of total hip replacement (THR) superior to a femoral mid-shaft fracture greatly complicates fixation and treatment. The most conventional fracture fixation method is internal fixation by metal plate and screws. However, metal being stiffer than bone, causes stress shielding and bone resorption. The goal of this study was to evaluate the performance of a less stiff carbon fibre epoxy plate as fracture fixation in an injured and healed femur. IR thermography validated by finite element analysis (FEA) was used to investigate the stress patterns of an injured and healed femur under an average cyclic loading of 800 N at an adduction angle of 7 degrees to simulate the single-legged stance phase of walking. The average stiffness of an injured femur with carbon/epoxy plate was 532.1 N/mm (static) and 625.3 N/mm (dynamic) respectively, that increased to 597.6 N/mm (static) and 697.9 N/mm (dynamic) for the metal plate. For the healed femur, the average stiffness increased from 1660.3 N/mm (static) and 2010.0 N/mm (dynamic) for the carbon/epoxy plate to 1704.4 N/mm (static) and 2070.4 N/mm (dynamic) for the metal plate. IR stress maps for carbon/epoxy and metal plate (injured femur) showed an overall difference of 29.2% for the anterior and posterior sides. This is the first study to assess experimentally and computationally the biomechanical behavior of injured and healed synthetic femur with two different plates construct.


2020 ◽  
Vol 58 (5) ◽  
pp. 921-931 ◽  
Author(s):  
Lina Yan ◽  
Joel Louis Lim ◽  
Jun Wei Lee ◽  
Clement Shi Hao Tia ◽  
Gavin Kane O’Neill ◽  
...  

2019 ◽  
Vol 10 (5) ◽  
pp. 678-691
Author(s):  
Intan Najwa Humaira Mohamed Haneef ◽  
Norhashimah Shaffiar ◽  
Yose Fachmi Buys ◽  
Abdul Malek Abd. Hamid

Purpose The internal fixation plate of bone fractures by using polylactic acid (PLA) has attracted the attention of many researchers, as it is biodegradable and biocompatible to the human body. However, its brittleness has led to implant fracture. On the contrary, polypropylene carbonate (PPC), which is also biodegradable and biocompatible, has an excellent elongation at break. The purpose of this paper is to compare the PLA fixation plate with the new fixation plate made up of PLA/PPC blends by using finite element analysis (FEA). Design/methodology/approach The mandible bone from CT data set and fixation plate was designed by using the MIMICS, Amira and Solidworks softwares. Abaqus software was used for FEA of PLA/PPC fixation plate applied on the fractured mandible bone. A model of mandibular bone with a fracture in the body was subjected to incisor load. The analysis was run to determine the von Mises stress, elongation of the fixation plate and the displacement of the fractured gap of PLA/PPC blends fixation plate. Findings The von Mises stress predicted that all the blend compositions were safe to be used as a fixation plate since the stress values were less than the yield strength. In addition, the stress value of the fixation plate was gradually decreased up to 20 percent when the amount of PPC increased to 30 percent. This indicates that the stress shielding effect was successfully reduced. The elongation of the fixation plate was gradually increased from 11.54 to 12.55 µm as the amount of PPC in the blends increased from 0 to 30 percent, thereby illustrating that the flexibility of the fixation plate was improved by the addition of PPC. Finally, the measured displacement of the fractured gap for all compositions of PLA/PPC blends fixation plate is less than 150 µm, which proves the likely success of fracture fixation by using the PLA/PPC blends. Research limitations/implications An optimum solution of PLA/PPC blends and another new material such as compatibilizer need to be introduced in the blends in order to improve the performance of PLA/PPC blends as a new material for a fixation plate. Besides, by using the same method of producing PLA/PPC blends, longer durations for in vitro degradation of PLA/PPC blends are essential to further understand the degradation behavior of the blends applied in the human body. Finally, it is also important to further test the mechanical strength of PLA/PPC blends during the degradation period to know the current strength of the implant in the healing process of the bone. Practical implications PLA fixation plate and screw can commercially be used in CMF surgery since they reduce cost because of the elimination of secondary surgery to remove the fixation plate and screw after the healing process. Social implications It is hoped that the advantages of this research will ensure the market of PLA product to continue expanding in medical application. Originality/value This study is one of the alternative ways for the biomedical researchers to improve the elongation break of PLA. Currently, many researchers focus on polymeric materials such as PLA, poly(glycolic) acid and polydioxanone blends, which were extensively being used in CMF surgery. However, the work on PLA/PPC blends to be used as one of the materials for the CMF fixation plate is very limited, if any. PPC, the proposed material for this research, will improve the mechanical performance of PLA fixation plate and screw to become more sustainable and flexible when applied on human mandible bone.


Sign in / Sign up

Export Citation Format

Share Document