Finite element analysis of bone and implant stresses for customized 3D-printed orthopaedic implants in fracture fixation

2020 ◽  
Vol 58 (5) ◽  
pp. 921-931 ◽  
Author(s):  
Lina Yan ◽  
Joel Louis Lim ◽  
Jun Wei Lee ◽  
Clement Shi Hao Tia ◽  
Gavin Kane O’Neill ◽  
...  
2021 ◽  
Vol 57 (4) ◽  
pp. 366-375
Author(s):  
Dragos-Florin Chitariu ◽  
Emilian Paduraru ◽  
Gures Dogan ◽  
Mehmet Ilhan ◽  
Florin Negoescu ◽  
...  

In this paper, the problem of the behaviour of soft jaws that can be used to replace the steel jaws of grippers is studied. One of the advantages of additive manufacturing is the printing of fully functional parts. Choice of material is often related to the part strength. The mechanical properties of 3D printed parts should meet the service loading and, also, must be comparable with parts produced by traditional manufacturing techniques - machined parts or injection moulding. From the specialized literature information regarding the test results for effect of various printing parameters on part strength are available made in laboratory conditions and for standard test sample. For ABS materials various values for Young module are presented varying from 1.5 GPa to 2.15 GPa, for 100% infill rate and various modified parameters such as raster orientation. In order to study the behaviour of soft gripper jaws several part were printing and the resistance to bending was tested, by simulating the way a gripper works. An experimental stand was built using a force transducer and a displacement transducer to measure the deformation of the jaw, obtained by 3D printing, under load. The mechanical elastic hysteresis loop during an experimental loading/unloading was plotted and the amount of mechanical energy lost during a cycle, dissipated because the internal friction, was determined. Finite element analysis method was applied to make a comparison with the experimental results. In the finite element analysis, several simulations were considered, varying Young s modulus for the tested material.


Author(s):  
Steven Higbee ◽  
Sharon Miller

Abstract Insufficient engineering analysis is a common weakness of student capstone design projects. Efforts made earlier in a curriculum to introduce analysis techniques should improve student confidence in applying these important skills toward design. To address student shortcomings in design, we implemented a new design project assignment for second-year undergraduate biomedical engineering students. The project involves the iterative design of a fracture fixation plate and is part of a broader effort to integrate relevant hands-on projects throughout our curriculum. Students are tasked with (1) using computer-aided design (CAD) software to make design changes to a fixation plate, (2) creating and executing finite element models to assess performance after each change, (3) iterating through three design changes, and (4) performing mechanical testing of the final device to verify model results. Quantitative and qualitative methods were used to assess student knowledge, confidence, and achievement in design. Students exhibited design knowledge gains and cognizance of prior coursework knowledge integration into their designs. Further, students self-reported confidence gains in approaching design, working with hardware and software, and communicating results. Finally, student self-assessments exceeded instructor assessment of student design reports, indicating that students have significant room for growth as they progress through the curriculum. Beyond the gains observed in design knowledge, confidence, and achievement, the fracture fixation project described here builds student experience with CAD, finite element analysis, 3D printing, mechanical testing, and design communication. These skills contribute to the growing toolbox that students ultimately bring to capstone design.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
J. Obedt Figueroa-Cavazos ◽  
Eduardo Flores-Villalba ◽  
José A. Diaz-Elizondo ◽  
Oscar Martínez-Romero ◽  
Ciro A. Rodríguez ◽  
...  

This work explores the viability of 3D printed intervertebral lumbar cages based on biocompatible polycarbonate (PC-ISO® material). Several design concepts are proposed for the generation of patient-specific intervertebral lumbar cages. The 3D printed material achieved compressive yield strength of 55 MPa under a specific combination of manufacturing parameters. The literature recommends a reference load of 4,000 N for design of intervertebral lumbar cages. Under compression testing conditions, the proposed design concepts withstand between 7,500 and 10,000 N of load before showing yielding. Although some stress concentration regions were found during analysis, the overall viability of the proposed design concepts was validated.


Sign in / Sign up

Export Citation Format

Share Document