Finite element analysis of flexural strengthening of timber beams with Carbon Fibre-Reinforced Polymers

2015 ◽  
Vol 101 ◽  
pp. 364-375 ◽  
Author(s):  
M. Khelifa ◽  
S. Auchet ◽  
P.-J. Méausoone ◽  
A. Celzard
PAMM ◽  
2012 ◽  
Vol 12 (1) ◽  
pp. 441-442
Author(s):  
Deepanshu Sodhani ◽  
Stefanie Reese

2013 ◽  
Vol 834-836 ◽  
pp. 720-725 ◽  
Author(s):  
Hai Liang Wang ◽  
Wei Chang ◽  
Xin Lei Yang

Six reinforced concrete beams, including 4 beams strengthened with BFRP sheets at different layer of BFRP sheets and 2 control beams, are tested to investigate the effect of layer of BFRP sheets on the ultimate flexural resistance and load-deflection response of the pre-damaged concrete beams strengthened with BFRP sheets. Results show that the flexural resistance of pre-damaged concrete beams increases along with the BFRP sheets layer increasing,but the flexural resistance enhances the degree not to assume the linear relations to the enforcement layer.Numerical simulation of the pre-damaged concrete beams strengthened with BFRP sheets is conducted by ANSYS, and the results of numerical simulation are compared with those of the test results. It turns out that the results of numerical simulation are in good agreement with the test results.


Author(s):  
Khaled Saad ◽  
András Lengyel

This study focuses on the flexural behavior of timber beams externally reinforced using carbon fiber-reinforced polymers (CFRP). Linear and non-linear finite element analysis were proposed and validated by experimental tests carried out on 44 timber beams to inversely determine the material properties of the timber and the CFRP. All the beams have the same geometrical properties and were loaded under four points bending. In this paper the general commercial software ANSYS was used, and three- and two-dimensional numerical models were evaluated for their ability to describe the behavior of the solid timber beams. The linear elastic orthotropic material model was assumed for the timber beams in the linear range and the 3D nonlinear rate-independent generalized anisotropic Hill potential model was assumed to describe the nonlinear behavior of the material. As for the CFRP, a linear elastic orthotropic material model was introduced for the fibers and a linear elastic isotropic model for the epoxy resin. No mechanical model was introduced to describe the interaction between the timber and the CFRP since failure occurred in the tensile zone of the wood. Simulated and measured load-mid-span deflection responses were compared and the material properties for timber-CFRP were numerically determined.


2021 ◽  
Author(s):  
Faisal Sharaf Siddiqui

Femur fractures are caused by high energy trauma or by musculoskeletal impairments, such as osteoporosis. The presence of total hip replacement (THR) superior to a femoral mid-shaft fracture greatly complicates fixation and treatment. The most conventional fracture fixation method is internal fixation by metal plate and screws. However, metal being stiffer than bone, causes stress shielding and bone resorption. The goal of this study was to evaluate the performance of a less stiff carbon fibre epoxy plate as fracture fixation in an injured and healed femur. IR thermography validated by finite element analysis (FEA) was used to investigate the stress patterns of an injured and healed femur under an average cyclic loading of 800 N at an adduction angle of 7 degrees to simulate the single-legged stance phase of walking. The average stiffness of an injured femur with carbon/epoxy plate was 532.1 N/mm (static) and 625.3 N/mm (dynamic) respectively, that increased to 597.6 N/mm (static) and 697.9 N/mm (dynamic) for the metal plate. For the healed femur, the average stiffness increased from 1660.3 N/mm (static) and 2010.0 N/mm (dynamic) for the carbon/epoxy plate to 1704.4 N/mm (static) and 2070.4 N/mm (dynamic) for the metal plate. IR stress maps for carbon/epoxy and metal plate (injured femur) showed an overall difference of 29.2% for the anterior and posterior sides. This is the first study to assess experimentally and computationally the biomechanical behavior of injured and healed synthetic femur with two different plates construct.


Sign in / Sign up

Export Citation Format

Share Document