scholarly journals Erratum to: Umbilical Cord Blood-Derived Mononuclear Cells Exhibit Pericyte-Like Phenotype and Support Network Formation of Endothelial Progenitor Cells In Vitro

2015 ◽  
Vol 43 (8) ◽  
pp. 2022-2022
Author(s):  
Erica B. Peters ◽  
Betty Liu ◽  
Nicolas Christoforou ◽  
Jennifer L. West ◽  
George A. Truskey
2010 ◽  
Vol 19 (9) ◽  
pp. 1143-1155 ◽  
Author(s):  
Valérie Vanneaux ◽  
Fida El-Ayoubi ◽  
Catherine Delmau ◽  
Catherine Driancourt ◽  
Séverine Lecourt ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5404-5404
Author(s):  
Eun-Sun Yoo ◽  
Jee-Young Ahn ◽  
KiHwan Kwon ◽  
Soo-Ah Oh ◽  
Moon-Young Choi ◽  
...  

Abstract Background: The identification of circulating endothelial progenitor cells (EPCs) has revolutionized approaches to cell-based therapy for injured and ischemic tissues. Recently, we have demonstrated that there are 2 distinct types of EPCs from UCB having different biologic properties for angiogenic capabilities in vitro and in vivo. In present study, the aim is to directly compare umbilical cord blood (UCB)- and BM-derived late EPC surface phenotypes and in vitro functional capacity. Methods: Mononuclear cells from UCB and BM cultured using EGM-2 medium with VEGF, IGF-1 and FGF for 21 days. Late outgrowing endothelail cells(late OECs) which were in peak growth at third weeks of culture were analyzed for expression of various surface markers by flow cytometry/RT-PCR/IF, tube formation in Matrigel plates, proliferation assay, endothelial colony assay and the role of SDF-1/VEGF on migration. Results: The adherent cells after culture of 7 days exhibited a fibroblast like shape in BM and a cobblestone shaped cells in UCB. Although two sources of OECs were comparable in expression of endothelial and various adhesion molecule markers, BM-derived OECs contained higher proportion of cells expressing smooth muscle cell markers(SMMHC), several adhesion molecule(CD49d, CD62L and VCAM-1), whereas the expression of CXCR-4, PECAM-1 and CD62E and expression of mRNA on endothelial marker genes were higher in UCB-derived OECs. UCB-OECS stained positive for uptake of acetylated low-density lipoprotein and had more migratory ability in the presence of SDF-1 and VEGF compared with BM-OECs. Both sources OECs effectively formed capillary tubes in Matrigel plates. Conclusion: We directly compared OECs derived from UCB and BM and two source of OECs differ in aspect of several adhesion molecule and angiogenic potential in vitro. These difference of UCB render it potentially advantageous for human therapeutic OECs applications for potential applications for a “cell therapy” in the situations on vascular injuries when compared with patients-derived BM.


Blood ◽  
2007 ◽  
Vol 110 (1) ◽  
pp. 151-160 ◽  
Author(s):  
Masumi Nagano ◽  
Toshiharu Yamashita ◽  
Hiromi Hamada ◽  
Kinuko Ohneda ◽  
Ken-ichi Kimura ◽  
...  

Umbilical cord blood (UCB) has been used as a potential source of various kinds of stem cells, including hematopoietic stem cells, mesenchymal stem cells, and endothelial progenitor cells (EPCs), for a variety of cell therapies. Recently, EPCs were introduced for restoring vascularization in ischemic tissues. An appropriate procedure for isolating EPCs from UCB is a key issue for improving therapeutic efficacy and eliminating the unexpected expansion of nonessential cells. Here we report a novel method for isolating EPCs from UCB by a combination of negative immunoselection and cell culture techniques. In addition, we divided EPCs into 2 subpopulations according to the aldehyde dehydrogenase (ALDH) activity. We found that EPCs with low ALDH activity (Alde-Low) possess a greater ability to proliferate and migrate compared to those with high ALDH activity (Alde-High). Moreover, hypoxia-inducible factor proteins are up-regulated and VEGF, CXCR4, and GLUT-1 mRNAs are increased in Alde-Low EPCs under hypoxic conditions, while the response was not significant in Alde-High EPCs. In fact, the introduction of Alde-Low EPCs significantly reduced tissue damage in ischemia in a mouse flap model. Thus, the introduction of Alde-Low EPCs may be a potential strategy for inducing rapid neovascularization and subsequent regeneration of ischemic tissues.


Stem Cells ◽  
2007 ◽  
Vol 25 (11) ◽  
pp. 2770-2776 ◽  
Author(s):  
Xiao Wu ◽  
M. William Lensch ◽  
Jill Wylie-Sears ◽  
George Q. Daley ◽  
Joyce Bischoff

Sign in / Sign up

Export Citation Format

Share Document