aldh activity
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 29)

H-INDEX

20
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Anna Bilska-Wilkosz

It is commonly known that aldehyde dehydrogenases (ALDHs) are a promising therapeutic target in many diseases. Bui et al. - the authors of the paper I am discussing here (Biosci Rep (2021) 41(5): BSR20210491; DOI: https://doi.org/10.1042/BSR20210491) - point that there is a lack of research on the use of spices and herbs as the sources of naturally occurring modulators of ALDH activity. In order to carry out this type of research, the authors prepared ethanolic extracts of 22 spices and herbs. The main objective of the study was to investigate retinaldehyde dehydrogenases (RALDHs), of which retinal is the main substrate and ALDH2, the mitochondrial isoform, having acetaldehyde as the main substrate. The obtained results indicated that the tested extracts exhibited differential regulatory effects on RALDHs/ALDH2 and some of them showed a potential selective inhibition of the activity of RALDHs.


Author(s):  
Regev Landau ◽  
Reut Halperin ◽  
Patti Sullivan ◽  
Zion Zibly ◽  
Avshalom Leibowitz ◽  
...  

Background: Recent reports indicate that Parkinson's disease (PD) involves specific functional abnormalities in residual neurons—decreased vesicular sequestration of cytoplasmic catecholamines via the vesicular monoamine transporter (VMAT) and decreased aldehyde dehydrogenase (ALDH) activity. This double hit builds up the autotoxic metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), the focus of the catecholaldehyde hypothesis for the pathogenesis of PD. An animal model is needed that reproduces this abnormal catecholamine neurochemical pattern. Methods: Adult rats received subcutaneous vehicle or rotenone (2 mg/kg/day via a minipump) for 10 days. Locomotor activity was recorded and striatal tissue sampled for catechol contents and catechol ratios that indicate the above abnormalities. Results: Compared to vehicle, rotenone reduced locomotor activity (p=0.002), decreased tissue dopamine concentrations (p=0.00001), reduced indices of vesicular sequestration (3,4-dihydroxyphenylacetic acid (DOPAC)/dopamine) and ALDH activity (DOPAC/DOPAL) (p=0.0025, p=0.036), and increased DOPAL levels (p=0.04). Conclusions: The rat rotenone model involves functional abnormalities in catecholaminergic neurons that replicate the pattern found in PD putamen. These include a vesicular storage defect, decreased ALDH activity, and DOPAL buildup. The rat rotenone model provides a suitable in vivo platform for studying the catecholaldehyde hypothesis.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5478
Author(s):  
Nina Melnikova ◽  
Darina Malygina ◽  
Alyona Balakireva ◽  
Peter Peretyagin ◽  
Vadim Revin ◽  
...  

The inhibition of platelet aggregation, and the activity of oxidoreductases and microhemocirculation in a burn wound on the treatment of burns with wound dressings based on bacterial nanocellulose (BC)-zinc oxide nanoparticles (ZnO NPs)-betulin diphosphate (BDP) were studied. The control of the treatment by BC-ZnO NPs-BDP on burned rats by the noninvasive DLF method showed an increase in perfusion and the respiratory component in wavelet spectra, characterizing an improvement in oxygen saturation in the wound. The study on the volunteers’ blood found the inhibition of ADP-induced platelet aggregation by 30–90%. Disaggregation depends on the dose under the action of the ionized form of BDP and ZnO NPs-BDP in a phosphate buffer; it was reversible and had two waves. It was shown on rats that the specific activity of LDHreverse and LDHdirect (control-intact animals) on day 21 of treatment increased by 11–38% and 23%, respectively. The LDHreverse/LDHdirect ratio increased at BC-ZnO NPs-BDP treatment, which characterizes efficient NAD+ regeneration. AlDH activity increased significantly in the first 10 days by 70–170%, reflecting the effectiveness of the enzyme and NAD+ in utilizing toxic aldehydes at this stage of burn disease. The activities of GR and G6PDH using NADP(H) were increased with BC-ZnO NPs-BDP treatment.


2021 ◽  
Vol 15 (1) ◽  
pp. 417-423
Author(s):  
Fabio Schemann-Miguel ◽  
Antonio Carlos Aloise ◽  
Silvana Gaiba ◽  
Lydia Masako Ferreira

Background: The application of static compressive forces to periodontal ligament fibroblasts (PDLFs) in vivo or in vitro has been linked to the expression of biochemical agents and local tissue modifications that could be involved in maintaining homeostasis during orthodontic movement. An approach used for identifying mesenchymal cells, or a subpopulation of progenitor cells in both tumoral and normal tissues, involves determining the activity of aldehyde dehydrogenase (ALDH). However, the role of subpopulations of PDLF-derived undifferentiated cells in maintaining homeostasis during tooth movement remains unclear. Objective: This study aimed at analyzing the effect of applying a static compressive force to PDLFs on the activity of ALDH in these cells. Methods: PDLFs were distributed into two groups: control group (CG), where fibroblasts were not submitted to compression, and experimental group (EG), where fibroblasts were submitted to a static compressive force of 4 g/mm2 for 6 hours. The compressive force was applied directly to the cells using a custom-built device. ALDH activity in the PDLFs was evaluated by a flow cytometry assay. Results: ALDH activity was observed in both groups, but was significantly lower in EG than in CG after the application of a static compressive force in the former. Conclusion: Application of a static compressive force to PDLFs decreased ALDH activity.


2021 ◽  
Author(s):  
Kavya Vipparthi ◽  
Kishore Hari ◽  
Priyanka Chakraborty ◽  
Subhashis Ghosh ◽  
Ankit Kumar Patel ◽  
...  

AbstractCancer cells within individual tumors often exist in distinct phenotypic states contributing to intratumoral heterogeneity (ITH). However, studies on cell state dynamics among oral cancer cells are largely missing. Here, we have multiplexed phenotypic markers of putative oral-stem-like cancer cells (SLCCs) and characterized diversity among CD44-positive oral cancer cell subpopulations with respect to distinct expression of CD24 and aldehyde dehydrogenase (ALDH)-activity. Our in vitro experimental observations were explained by a Markov model where subpopulations followed two distinct patterns of spontaneous repopulation dynamics. Cells showed stochastic inter-conversions on ALDH-axis, harnessed by cancer cells to enrich ALDHHigh subpopulations in response to Cisplatin treatment. However, these cells followed a strict non-interconvertible transition of CD24Low to CD24High subpopulations, even in response to chemotherapy-induced stress. Using phenotype-specific RNAseq, we suggest the organization of subpopulations into hierarchical structure with possible maintenance of intermediate alternate states of stemness within the differentiating oral cancer cells. We also show that the population dynamics described here may influence tumor behaviour by increasing ITH in aggressive oral tumors. Overall, the described phenotypic subgroups not only reliably exhibited spontaneous or Cisplatin-driven cellular dynamics but also the distinct transcription states of oral cancer cells. Most importantly, our in vitro model system derived observations emphasized the prognostic power which may be translated for betterment of oral cancer patients.Graphical AbstractWe have characterized diversity among CD44-positive oral cancer cells lines with respect to distinct expression of CD24 and ALDH-activity. Cells showed stochastic inter-conversions on ALDH-axis but a strict non-interconvertible transition of CD24Low to CD24High phenotype, even in response to chemotherapy-induced stress. RNAseq study suggested the organization of subpopulations into hierarchical structure with possible maintenance of intermediate alternate states of stemness within the differentiating oral cancer cells. The described population dynamics may influence tumor behaviour by increasing intratumoral heterogeneity in aggressive oral tumors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hiroshi Takahashi ◽  
Taku Nakashima ◽  
Takeshi Masuda ◽  
Masashi Namba ◽  
Shinjiro Sakamoto ◽  
...  

Abstract Background Aldehyde dehydrogenase (ALDH) is highly expressed in stem/progenitor cells in various tissues, and cell populations with high ALDH activity (ALDHbr) are associated with tissue repair. However, little is known about lung-resident ALDHbr. This study was performed to clarify the characteristics of lung-resident ALDHbr cells and to evaluate their possible use as a tool for cell therapy using a mouse model of bleomycin-induced pulmonary fibrosis. Methods The characteristics of lung-resident/nonhematopoietic (CD45−) ALDHbr cells were assessed in control C57BL/6 mice. The kinetics and the potential usage of CD45−/ALDHbr for cell therapy were investigated in bleomycin-induced pulmonary fibrosis. Localization of transferred CD45−/ALDHbr cells was determined using mCherry-expressing mice as donors. The effects of aging on ALDH expression were also assessed using aged mice. Results Lung CD45−/ALDHbr showed higher proliferative and colony-forming potential than cell populations with low ALDH activity. The CD45−/ALDHbr cell population, and especially its CD45−/ALDHbr/PDGFRα+ subpopulation, was significantly reduced in the lung during bleomycin-induced pulmonary fibrosis. Furthermore, mRNA expression of ALDH isoforms was significantly reduced in the fibrotic lung. When transferred in vivo into bleomycin-pretreated mice, CD45−/ALDHbr cells reached the site of injury, ameliorated pulmonary fibrosis, recovered the reduced expression of ALDH mRNA, and prolonged survival, which was associated with the upregulation of the retinol-metabolizing pathway and the suppression of profibrotic cytokines. The reduction in CD45−/ALDHbr/PDGFRα+ population was more remarkable in aged mice than in young mice. Conclusions Our results strongly suggest that the lung expression of ALDH and lung-resident CD45−/ALDHbr cells are involved in pulmonary fibrosis. The current study signified the possibility that CD45−/ALDHbr cells could find application as novel and useful cell therapy tools in pulmonary fibrosis treatment.


2021 ◽  
Author(s):  
Mina Darooee ◽  
Vajihe Akbari ◽  
Azade Taheri

Aim: The overexpression of aldehyde dehydrogenase (ALDH) in cancer cells contributes to therapeutic resistance. Furazolidone (FUR) is a strong ALDH inhibitor. Methods: FUR nanoemulsion (NE) was formulated and tested for ALDH inhibitory activity in comparison with free FUR. The cytotoxic potential of cisplatin was evaluated in combination with free FUR and FUR NE. Results: The optimized FUR NE showed droplet size of 167.9 ± 3.1 nm and drug content of 84.2 ± 2.3%. FUR NE inhibited 99.75 ± 2.1% of ALDH activity while 25.0 ± 4.6% was inhibited by free FUR. FUR NE increased the sensitivity to cisplatin in A549 cells by more than tenfold by its ALDH inhibitory effects. Conclusion: This finding can be a promising approach to improve cancer survival in ALDH-positive drug-resistant cancers.


2021 ◽  
Vol 15 ◽  
Author(s):  
Huan Liu ◽  
Mei Tan ◽  
Boli Cheng ◽  
Si Wang ◽  
Lu Xiao ◽  
...  

ObjectivesThis study aimed to investigate the impact of valproic acid (VPA) on the histone acetylation of acetaldehyde dehydrogenase 1A1 (ALDH1A1) and the mechanism underlying VPA-induced autism-like behavior.MethodsFemale Sprague-Dawley rats were intraperitoneally injected with VPA during gestation to establish an autism model in their offspring. Some offspring prenatally exposed to VPA were randomly treated with MS-275, one histone deacetylase (HDAC) inhibitor, or retinoic acid (RA) after birth. Behavioral tests were conducted on the offspring 6 weeks after birth. Electrophysiological experiments were performed to investigate long-term potentiation (LTP) in the prefrontal cortex (PFC). The expression levels of AMPA receptors (GluA1 and 2), NMDA receptors (GluN1 and 2), synapsin 1 (SYN1), HDAC, acetylated histone 3 (AcH3), RA receptor alpha (RARα), and ALDH1A1 in the PFC were measured by Western blotting and quantitative polymerase chain reaction. ALDH enzyme activity in PFC tissue was detected using a Micro ALDH Assay Kit. The RA level in the PFC was measured using ultrahigh-performance liquid chromatography/tandem mass spectrometry. A chromatin immunoprecipitation (ChIP) experiment explored the interaction between the ALDH1A1 gene and AcH3.ResultsOffspring prenatally exposed to VPA showed autism-like behavior, upregulated the levels of LTP and GluN2A, GluA1, and SYN1 proteins relevant to synaptic plasticity in the PFC. The expression levels of HDAC3 mRNA and protein were increased. On the other hand, there was a significant reduction in the levels of AcH3, RARα, RA, ALDH1A1 mRNA and protein, the level of ALDH activity and AcH3 enrichment in the ALDH1A1 promoter region in VPA-induced offspring. Administration of MS-275 in VPA offspring significantly elevated the levels of AcH3, ALDH1A1 mRNA and protein, ALDH activity, RA, the level of RARα protein and the binding of AcH3 to the ALDH1A1 promoter. In addition, the GluA1 protein level and LTP were reduced, and most behavioral deficits were reversed. After RA supplementation in the VPA-treated offspring, the RA and RARα protein levels were significantly upregulated, GluA1 protein and LTP were downregulated, and most autism-like behavioral deficits were effectively reversed.ConclusionThese findings suggest that VPA impairs histoneacetylation of ALDH1A1 and downregulates the RA-RARα pathway. Such epigenetic modification of ALDH1A1 by VPA leads to autism-like synaptic and behavioral deficits.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Takashi Ogino ◽  
Naoya Matsunaga ◽  
Takahiro Tanaka ◽  
Tomohito Tanihara ◽  
Hideki Terajima ◽  
...  

Disruption of the circadian clock machinery in cancer cells is implicated in tumor malignancy. Studies on cancer therapy reveal the presence of heterogeneous cells, including breast cancer stem-like cells (BCSCs), in breast tumors. BCSCs are often characterized by high aldehyde dehydrogenase (ALDH) activity, associated with the malignancy of cancers. In this study, we demonstrated the negative regulation of ALDH activity by the major circadian component CLOCK in murine breast cancer 4T1 cells. The expression of CLOCK was repressed in high-ALDH-activity 4T1, and enhancement of CLOCK expression abrogated their stemness properties, such as tumorigenicity and invasive potential. Furthermore, reduced expression of CLOCK in high-ALDH-activity 4T1 was post-transcriptionally regulated by microRNA: miR-182. Knockout of miR-182 restored the expression of CLOCK, resulted in preventing tumor growth. Our findings suggest that increased expression of CLOCK in BCSCs by targeting post-transcriptional regulation overcame stemness-related malignancy and may be a novel strategy for breast cancer treatments.


2021 ◽  
Vol 9 (1) ◽  
pp. 162
Author(s):  
Sean Michael Scully ◽  
Aaron E. Brown ◽  
Yannick Mueller-Hilger ◽  
Andrew B. Ross ◽  
Jóhann Örlygsson

Thermoanaerobacter species have recently been observed to reduce carboxylic acids to their corresponding alcohols. The present investigation shows that Thermoanaerobacter pseudoethanolicus converts C2–C6 short-chain fatty acids (SCFAs) to their corresponding alcohols in the presence of glucose. The conversion yields varied from 21% of 3-methyl-1-butyrate to 57.9% of 1-pentanoate being converted to their corresponding alcohols. Slightly acidic culture conditions (pH 6.5) was optimal for the reduction. By increasing the initial glucose concentration, an increase in the conversion of SCFAs reduced to their corresponding alcohols was observed. Inhibitory experiments on C2–C8 alcohols showed that C4 and higher alcohols are inhibitory to T. pseudoethanolicus suggesting that other culture modes may be necessary to improve the amount of fatty acids reduced to the analogous alcohol. The reduction of SCFAs to their corresponding alcohols was further demonstrated using 13C-labelled fatty acids and the conversion was followed kinetically. Finally, increased activity of alcohol dehydrogenase (ADH) and aldehyde oxidation activity was observed in cultures of T. pseudoethanolicus grown on glucose as compared to glucose supplemented with either 3-methyl-1-butyrate or pentanoate, using both NADH and NADPH as cofactors, although the presence of the latter showed higher ADH and aldehyde oxidoreductase (ALDH) activity.


Sign in / Sign up

Export Citation Format

Share Document