Tissue-Engineered External Anal Sphincter Using Autologous Myogenic Satellite Cells and Extracellular Matrix: Functional and Histological Studies

2015 ◽  
Vol 44 (5) ◽  
pp. 1773-1784 ◽  
Author(s):  
Abdol-Mohammad Kajbafzadeh ◽  
Majid Kajbafzadeh ◽  
Shabnam Sabetkish ◽  
Nastaran Sabetkish ◽  
Seyyed Mohammad Tavangar
2021 ◽  
Vol 22 (16) ◽  
pp. 8376
Author(s):  
Stig Skrivergaard ◽  
Martin Krøyer Rasmussen ◽  
Margrethe Therkildsen ◽  
Jette Feveile Young

Cultured meat is an emerging alternative food technology which aims to deliver a more ethical, sustainable, and healthy muscle-tissue-derived food item compared to conventional meat. As start-up companies are rapidly forming and accelerating this technology, many aspects of this multi-faceted science have still not been investigated in academia. In this study, we investigated if bovine satellite cells with the ability to proliferate and undergo myogenic differentiation could be isolated after extended tissue storage, for the purpose of increasing the practicality for cultured meat production. Proliferation of bovine satellite cells isolated on the day of arrival or after 2 and 5 days of tissue storage were analyzed by metabolic and DNA-based assays, while their myogenic characteristics were investigated using RT-qPCR and immunofluorescence. Extended tissue storage up to 5 days did not negatively affect proliferation nor the ability to undergo fusion and create myosin heavy chain-positive myotubes. The expression patterns of myogenic and muscle-specific genes were also not affected after tissue storage. In fact, the data indicated a positive trend in terms of myogenic potential after tissue storage, although it was non-significant. These results suggest that the timeframe of which viable myogenic satellite cells can be isolated and used for cultured meat production can be greatly extended by proper tissue storage.


Author(s):  
Andrea Povedano ◽  
Rosana Siqueira Brown ◽  
Daniel A. N. Barbosa ◽  
Rossano Kepler Alvim Fiorelli ◽  
Fernando Guedes

2004 ◽  
Vol 16 (2) ◽  
pp. E8 ◽  
Author(s):  
Karl F. Kothbauer ◽  
Klaus Novak

Object Intraoperative neurophysiological recording techniques have found increasing use in neurosurgical practice. The development of new recording techniques feasible while the patient receives a general anesthetic have improved their practical use in a similar way to the use of digital recording, documentation, and video technology. This review intends to provide an update on the techniques used and their validity. Methods Two principal methods are used for intraoperative neurophysiological testing during tethered cord release. Mapping identifies functional neural structures, namely nerve roots, and monitoring provides continuous information on the functional integrity of motor and sensory pathways as well as reflex circuitry. Mapping is performed mostly by using direct electrical stimulation of a structure within the surgical field and recording at a distant site, usually a muscle. Sensory mapping can also be performed with peripheral stimulation and recording within the surgical site. Monitoring of the motor system is achieved with motor evoked potentials. These are evoked by transcranial electrical stimulation and recorded from limb muscles and the external anal sphincter. The presence or absence of muscle responses are the parameters monitored. Sensory potentials evoked by tibial or pudendal nerve stimulation and recorded from the dorsal columns via an epidurally inserted electrode and/or from the scalp as cortical responses are used to access the integrity of sensory pathways. Amplitudes and latencies of these responses are then interpreted. The bulbocavernosus reflex, with stimulation of the pudendal nerve and recording of muscle responses in the external anal sphincter, is used for continuous monitoring of the reflex circuitry. Presence or absence of this response is the pertinent parameter that is monitored. Conclusions Intraoperative neurophysiology provides a wide and reliable set of techniques for intraoperative identification of neural structures and continuous monitoring of their functional integrity.


2008 ◽  
Vol 134 (4) ◽  
pp. A-281
Author(s):  
Adeel A. Bajwa ◽  
Kumaran Thiruppathy ◽  
Prateesh Trivedi ◽  
Anton V. Emmanuel

2015 ◽  
Vol 193 (4) ◽  
pp. 1433-1440 ◽  
Author(s):  
Kevin Peikert ◽  
Ivan Platzek ◽  
Thomas Bessède ◽  
Christian Albrecht May

2019 ◽  
Vol 126 (5) ◽  
pp. 1492-1501 ◽  
Author(s):  
Richard L. Lieber ◽  
Jan Fridén

Skeletal muscle contractures represent the permanent shortening of a muscle-tendon unit, resulting in loss of elasticity and, in extreme cases, joint deformation. They may result from cerebral palsy, spinal cord injury, stroke, muscular dystrophy, and other neuromuscular disorders. Contractures are the prototypic and most severe clinical presentation of increased passive mechanical muscle force in humans, often requiring surgical correction. Intraoperative experiments demonstrate that high muscle passive force is associated with sarcomeres that are abnormally stretched, although otherwise normal, with fewer sarcomeres in series. Furthermore, changes in the amount and arrangement of collagen in the extracellular matrix also increase muscle stiffness. Structural light and electron microscopy studies demonstrate that large bundles of collagen, referred to as perimysial cables, may be responsible for this increased stiffness and are regulated by interaction of a number of cell types within the extracellular matrix. Loss of muscle satellite cells may be related to changes in both sarcomeres and extracellular matrix. Future studies are required to determine the underlying mechanism for changes in muscle satellite cells and their relationship (if any) to contracture. A more complete understanding of this mechanism may lead to effective nonsurgical treatments to relieve and even prevent muscle contractures.


Sign in / Sign up

Export Citation Format

Share Document