Impact Force, Polar Gap and Modal Parameters Predict Acetabular Cup Fixation: A Study on a Composite Bone

2018 ◽  
Vol 46 (4) ◽  
pp. 590-604 ◽  
Author(s):  
Petr Henyš ◽  
Lukáš Čapek
Author(s):  
Lara Ma Erviti Calvo ◽  
Gorka Agirre Castellanos ◽  
Igor Alonso Portillo ◽  
Mayi Garcia Prada

The more demanding safety and comfort requirements combined with the increasing maximum speed of trains have lead to a growing concern in aspects such as the determination of the modal parameters of railway vehicles. Until now, the modal parameters of a vehicle have been obtained by EMA (Experimental Modal Analysis) based on the application of an impact force on the vehicle frame. However this kind of test is not optimal for railway vehicles because, due to their large dimensions, an impact force is unable to excite all the points of the structure. Also, with this method only the structural modes can be analyzed. Because of these drawbacks, a new modal analysis methodology is proposed, in which the excitation force comes from a specially designed shaker mounted under a point of a test track. In this manner, real excitation conditions can be simulated and it allows to determine not only the structural modes, but also the vibration modes associated with the suspensions. In first place, a description of the test facilities is presented. Afterwards, we present a test carried out in one of the coaches of a high speed train. The instrumentation employed, test methodology and test results are described. Finally, the test results are compared with the results obtained from a modal test in which impact excitation was used. Also the vibration modes obtained in the test are compared with the theoretical ones, which have been calculated with a combination of a FEM (Finite Element Method) and a MBS (Multi-Body Simulation).


2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-185-Pr9-190
Author(s):  
K. Ogawa ◽  
T. Yokoyama

2019 ◽  
Vol 7 (2) ◽  
pp. 205-213
Author(s):  
Yong-Doo Kim ◽  
Seung-Jae Lim ◽  
Hyun-Ung Bae ◽  
Kyoung-Ju Kim ◽  
Chin-Ok Lee ◽  
...  
Keyword(s):  

2015 ◽  
Vol 39 (1) ◽  
pp. 145-149 ◽  
Author(s):  
Ewa B. Skrodzka ◽  
Bogumił B.J. Linde ◽  
Antoni Krupa

Abstract Experimental modal analysis of a violin with three different tensions of a bass bar has been performed. The bass bar tension is the only intentionally introduced modification of the instrument. The aim of the study was to find differences and similarities between top plate modal parameters determined by a bass bar perfectly fitting the shape of the top plate, the bass bar with a tension usually applied by luthiers (normal), and the tension higher than the normal value. In the modal analysis four signature modes are taken into account. Bass bar tension does not change the sequence of mode shapes. Changes in modal damping are insignificant. An increase in bass bar tension causes an increase in modal frequencies A0 and B(1+) and does not change the frequencies of modes CBR and B(1-).


Sign in / Sign up

Export Citation Format

Share Document