A Sub-Supersolution Method for a Class of Nonlocal Problems Involving the p ( x ) $p(x)$ -Laplacian Operator and Applications

2017 ◽  
Vol 153 (1) ◽  
pp. 171-187 ◽  
Author(s):  
Gelson C. G. dos Santos ◽  
Giovany M. Figueiredo ◽  
Leandro S. Tavares
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Chang-Mu Chu ◽  
Yu-Xia Xiao

In the paper, we study the existence of weak solutions for a class of new nonlocal problems involving a p x -Laplacian operator. By using Ekeland’s variational principle and mountain pass theorem, we prove that the new p x -Kirchhoff problem has at least two nontrivial weak solutions.


2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


2021 ◽  
pp. 1-16
Author(s):  
Alexander Dabrowski

A variational characterization for the shift of eigenvalues caused by a general type of perturbation is derived for second order self-adjoint elliptic differential operators. This result allows the direct extension of asymptotic formulae from simple eigenvalues to repeated ones. Some examples of particular interest are presented theoretically and numerically for the Laplacian operator for the following domain perturbations: excision of a small hole, local change of conductivity, small boundary deformation.


2020 ◽  
Vol 10 (1) ◽  
pp. 522-533
Author(s):  
Amanda S. S. Correa Leão ◽  
Joelma Morbach ◽  
Andrelino V. Santos ◽  
João R. Santos Júnior

Abstract Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + $\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi denotes the eigenspace associated to the i-th eigenvalue λi of laplacian operator with homogeneous Dirichlet boundary condition.


Author(s):  
Haiffa Muhsan B. Alrikabi ◽  
Ayed E. Hashoosh ◽  
Ahmed A. H. Alkhalidi

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abderrazak Nabti ◽  
Ahmed Alsaedi ◽  
Mokhtar Kirane ◽  
Bashir Ahmad

Abstract We prove the nonexistence of solutions of the fractional diffusion equation with time-space nonlocal source $$\begin{aligned} u_{t} + (-\Delta )^{\frac{\beta }{2}} u =\bigl(1+ \vert x \vert \bigr)^{ \gamma } \int _{0}^{t} (t-s)^{\alpha -1} \vert u \vert ^{p} \bigl\Vert \nu ^{ \frac{1}{q}}(x) u \bigr\Vert _{q}^{r} \,ds \end{aligned}$$ u t + ( − Δ ) β 2 u = ( 1 + | x | ) γ ∫ 0 t ( t − s ) α − 1 | u | p ∥ ν 1 q ( x ) u ∥ q r d s for $(x,t) \in \mathbb{R}^{N}\times (0,\infty )$ ( x , t ) ∈ R N × ( 0 , ∞ ) with initial data $u(x,0)=u_{0}(x) \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})$ u ( x , 0 ) = u 0 ( x ) ∈ L loc 1 ( R N ) , where $p,q,r>1$ p , q , r > 1 , $q(p+r)>q+r$ q ( p + r ) > q + r , $0<\gamma \leq 2 $ 0 < γ ≤ 2 , $0<\alpha <1$ 0 < α < 1 , $0<\beta \leq 2$ 0 < β ≤ 2 , $(-\Delta )^{\frac{\beta }{2}}$ ( − Δ ) β 2 stands for the fractional Laplacian operator of order β, the weight function $\nu (x)$ ν ( x ) is positive and singular at the origin, and $\Vert \cdot \Vert _{q}$ ∥ ⋅ ∥ q is the norm of $L^{q}$ L q space.


Sign in / Sign up

Export Citation Format

Share Document