OR/MS decision support models for the specialty crops industry: a literature review

2009 ◽  
Vol 190 (1) ◽  
pp. 131-148 ◽  
Author(s):  
Wenbo Zhang ◽  
Wilbert E. Wilhelm
2017 ◽  
Author(s):  
Clara Schaarup ◽  
Louise Bilenberg Pape-Haugaard ◽  
Ole Kristian Hejlesen

BACKGROUND Chronic wounds such as diabetic foot ulcers, venous leg ulcers, and pressure ulcers are a massive burden to health care facilities. Many randomized controlled trials on different wound care elements have been conducted and published in the Cochrane Library, all of which have only a low evidential basis. Thus, health care professionals are forced to rely on their own experience when making decisions regarding wound care. To progress from experience-based practice to evidence-based wound care practice, clinical decision support systems (CDSS) that help health care providers with decision-making in a clinical workflow have been developed. These systems have proven useful in many areas of the health care sector, partly because they have increased the quality of care, and partially because they have generated a solid basis for evidence-based practice. However, no systematic reviews focus on CDSS within the field of wound care to chronic wounds. OBJECTIVE The aims of this systematic literature review are (1) to identify models used in CDSS that support health care professionals treating chronic wounds, and (2) to classify each clinical decision support model according to selected variables and to create an overview. METHODS A systematic review was conducted using 6 databases. This systematic literature review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement for systematic reviews. The search strategy consisted of three facets, respectively: Facet 1 (Algorithm), Facet 2 (Wound care) and Facet 3 (Clinical decision support system). Studies based on acute wounds or trauma were excluded. Similarly, studies that presented guidelines, protocols and instructions were excluded, since they do not require progression along an active chain of reasoning from the clinicians, just their focus. Finally, studies were excluded if they had not undergone a peer review process. The following aspects were extracted from each article: authors, year, country, the sample size of data and variables describing the type of clinical decision support models. The decision support models were classified in 2 ways: quantitative decision support models, and qualitative decision support models. RESULTS The final number of studies included in the systematic literature review was 10. These clinical decision support models included 4/10 (40%) quantitative decision support models and 6/10 (60%) qualitative decision support models. The earliest article was published in 2007, and the most recent was from 2015. CONCLUSIONS The clinical decision support models were targeted at a variety of different types of chronic wounds. The degree of accessibility of the inference engines varied. Quantitative models served as the engine and were invisible to the health care professionals, while qualitative models required interaction with the user.


2021 ◽  
Author(s):  
Dmytro Perepolkin

The present literature review aims to perform a survey of the decision support models used in waterfowl management. Special attention is dedicated to the origins and practice of adaptive management and modern applications of agent-based models focusing on explicit acknowledgment and treatment of uncertainty in these models.


Author(s):  
A. V. Smirnov ◽  
T. V. Levashova

Introduction: Socio-cyber-physical systems are complex non-linear systems. Such systems display emergent properties. Involvement of humans, as a part of these systems, in the decision-making process contributes to overcoming the consequences of the emergent system behavior, since people can use their experience and intuition, not just the programmed rules and procedures.Purpose: Development of models for decision support in socio-cyber-physical systems.Results: A scheme of decision making in socio-cyber-physical systems, a conceptual framework of decision support in these systems, and stepwise decision support models have been developed. The decision-making scheme is that cybernetic components make their decisions first, and if they cannot do this, they ask humans for help. The stepwise models support the decisions made by components of socio-cyber-physical systems at the conventional stages of the decision-making process: situation awareness, problem identification, development of alternatives, choice of a preferred alternative, and decision implementation. The application of the developed models is illustrated through a scenario for planning the execution of a common task for robots.Practical relevance: The developed models enable you to design plans on solving tasks common for system components or on achievement of common goals, and to implement these plans. The models contribute to overcoming the consequences of the emergent behavior of socio-cyber-physical systems, and to the research on machine learning and mobile robot control.


Sign in / Sign up

Export Citation Format

Share Document