Principal parametric resonance of axially accelerating rectangular thin plate in magnetic field

2013 ◽  
Vol 34 (11) ◽  
pp. 1405-1420 ◽  
Author(s):  
Yu-da Hu ◽  
Jin-zhi Zhang
2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Zhe Li ◽  
Yu-da Hu ◽  
Jing Li

Nonlinear principal parametric resonance and stability are investigated for rotating circular plate subjected to parametric excitation resulting from the time-varying speed in the magnetic field. According to the conductive rotating thin circular plate in magnetic field, the magnetoelastic parametric vibration equations of a conductive rotating thin circular plate are deduced by the use of Hamilton principle with the expressions of kinetic energy and strain energy. The axisymmetric parameter vibration differential equation of the variable-velocity rotating circular plate is obtained through the application of Galerkin integral method. Then, the method of multiple scales is applied to derive the nonlinear principal parametric resonance amplitude-frequency equation. The stability and the critical condition of stability of the plate are discussed. The influences of detuning parameter, rotation rate, and magnetic induction intensity are investigated on the principal parametric resonance behavior. The result shows that stable and unstable solutions exist when detuning parameter is negative, and the resonance amplitude can be weakened by changing the magnetic induction intensity.


2014 ◽  
Vol 628 ◽  
pp. 127-132
Author(s):  
Jian Xin Tu ◽  
Zhi Ren Wang ◽  
Han Zhu ◽  
Ping Wang

In this paper, the magneto-elastic nonlinear random vibration of a clamped rectangular thin plate in magnetic field is studied. According to the magneto-elastic theory of plates and shells and the theory of structural random vibration, the magneto-elastic nonlinear random vibration equation of a clamped rectangular thin plate in a magnetic field is derived. Then the nonlinear random vibration equation is transferred into the Ito differential equation, and the Ito differential equation is solved using FPK equation method. Thus the numerical characteristics of displacement response and velocity response of the rectangular thin plate are obtained. Finally, through a numerical example, the influences of magnetic field parameters on the numerical characteristics are discussed, and some methods which can be used to effectively control the random vibration responses of the plate are given.


2013 ◽  
Vol 699 ◽  
pp. 641-644
Author(s):  
Xiao Li Bian ◽  
Shuang Bao Li

Nonlinear oscillations of a simply-supported symmetric cross-ply composite laminated rectangular thin plate are investigated in this paper. The rectangular thin plate is subjected to the transversal and in-plane excitations. Based on the Reddy’s third-order shear deformation plate theory and the stress-strain relationship of the composite laminated plate, a two-degree-of-freedom non-autonomous nonlinear system governing equations of motions for the composite laminated rectangular thin plate is derived by using the Galerkin’s method. Numerical simulations illustrate that there exist complex nonlinear oscillations for composite laminated rectangular thin plate.


Author(s):  
Xiangying Guo ◽  
Wei Zhang ◽  
Ming-Hui Yao

This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s three-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial differential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization approach, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation. The results of numerical simulation also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.


Sign in / Sign up

Export Citation Format

Share Document