magnetic induction intensity
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 17)

H-INDEX

4
(FIVE YEARS 1)

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1541
Author(s):  
Xiangyong Zhang ◽  
Haipeng Liu ◽  
Yunli He ◽  
Tingrui Peng ◽  
Bin Su ◽  
...  

Due to the particular arrangement of permanent magnets, a Halbach array has an significant effect of magnetism and magnetic self-shielding. It can stretch the magnetic lines on one side of the magnetic field to obtain an ideal sinusoidal unilateral magnetic field. It has a wide application range in the field of energy harvesting. In practical applications, magnetic induction intensity of each point in magnetic field is not only related to the induced current and conductor but also related to the permeability of the medium (also known as a magnetic medium) in the magnetic field. Permeability is the physical quantity that represents the magnetism of the magnetic medium, which indicates the resistance of magnetic flux or the ability of magnetic lines to be connected in the magnetic field after coil flows through current in space or in the core space. When the permeability is much greater than one, it is a ferromagnetic material. Adding a ferromagnetic material in a magnetic field can increase the magnetic induction intensity B. Iron sheet is a good magnetic material, and it is easy to magnetize to generate an additional magnetic field to strengthen the original magnetic field, and it is easy to obtain at low cost. In this paper, in order to explore the influence of ferromagnetic material on the magnetic field and energy harvesting efficiency of the Halbach array energy harvesting structure, iron sheets are installed on the periphery of the Halbach array rotor. Iron sheet has excellent magnetic permeability. Through simulation, angle between iron sheet and Halbach array, radian size of iron sheet itself and distance between iron sheet and Halbach array can all have different effects on the magnetic field of the Halbach array. It shows that adding iron sheets as a magnetic medium could indeed change the magnetic field distribution of the Halbach array and increase energy harvesting efficiency. In this paper, a Halbach array can be used to provide electrical power for passive wireless low-power devices.


2021 ◽  
Vol 1035 ◽  
pp. 773-777
Author(s):  
Sheng Lei ◽  
Shuai Li ◽  
Jun Sun ◽  
Ji Xiang Zhu ◽  
Ya Feng Liu ◽  
...  

Since Fe-based amorphous alloys are widely used in magnetic separators, sensors and other fields, it is of practical significance to carry out research on amorphous strips used in this field.The effects of annealing temperature on the soft magnetic properties of Fe70.43Nb10.77Si15.77Cu2.34B0.69 amorphous nanostrips with 25 μm and 28 μm thickness prepared by the single roll cold method were investigated at 20 and 300K.Five specimens were annealed at472.12K, 672.12K, 772.12K, 822.12Kand 872.12K, respectively, and their microstructure and magnetic properties were tested viametallographic microscopy, X-ray diffraction, and vibrating specimen magnetometer. At cryogenic temperatureof 20K, specimens annealed at 672,12K exhibited the best magnetic properties, including the coercive forceof8.1265A/m, saturation magnetic induction intensity of1.4351T,and its residual value of 0.2462T. The comparative analysis of experimental results obtained strongly indicates that the soft magnetic properties of the amorphous alloy are significantly improved by the particular annealing treatment.


2021 ◽  
pp. 137-144
Author(s):  
Fei Liu ◽  
Zhen Lin ◽  
Dapeng Li ◽  
Tao Zhang

As the core part of precision seeder, the performance of pickup finger seed metering device directly affects the seeding quality. Aiming at the problem that the traditional pickup finger seed metering device can be easily affected by the performance of spring material, and the reliability of spring decreases with the increase of service time, a magnetic pickup finger seed metering device is designed to open and close the pickup finger by magnetic force, so as to improve the stability of seed metering performance. Through the design and optimization of permanent magnet structure, cam structure and seed taking pickup finger structure, the magnetic force distribution of ring magnet is analysed by using ANSYS Maxwell magnetic simulation software. Under the working speed of 3.9km/h, the vibration frequency, vibration amplitude and magnetic induction intensity were selected for orthogonal test. The experimental results show that the optimal combination of factors is vibration frequency 6Hz, vibration amplitude 3.1mm and magnetic induction intensity 316.34mT. Under the condition of the combination of operation parameters, the seed arrangement performance is 91.7% of the qualified rate, 6.2% of the replant rate and 2.1% of the missed rate, which meets the requirements of the national standard for the performance of the seeder. This study can provide a reference for the optimization of the structure and the improvement of the seed metering performance of the pickup finger seed metering device.


2021 ◽  
Author(s):  
Wangxu Li ◽  
Zhenggui Li ◽  
Jie Cheng ◽  
Lianchen Xu ◽  
Xinrui Li

Abstract In a liquid environment, the instability of the interface layer of the rotating fluid medium is one of the main causes for the failure of magnetic liquid seals. The turbulence intensity of the interfacial layer between the magnetic and the sealing medium fluids in magnetic liquid seals directly affects the layer stability. Reducing the maximum turbulence intensity is an effective way to improve the stability of the magnetic fluid rotating seal. In this study, we simulated magnetic fluid sealing devices with different structures in liquid environments using FLUENT software. The simulation results are verified through experimental analyses and the turbulence intensity at the sealing interface is analyzed. We simulated the magnetic circuit using Maxwell software, and compared the difference between the optimized and traditional structures. The results show that the maximum turbulence intensity of the liquid interface layer increases with the increasing shaft speed. At the same speed, the turbulence intensity is maximized at the shaft interface before gradually decreasing in a multistage linear pattern along the radial direction. The turbulence intensity at the interface of the spindle is relatively large, which seriously affects the stability of the interface. Based on these results, the optimized structure (OS) of the magnetic liquid seal in the liquid environment is designed. The maximum turbulence intensity of the liquid interface layer in the OS is more than 20% lower than that in the traditional structure (TS), and it is independent of the rotation speed. The optimized and the traditional structures have the same magnetic induction intensity distribution at the sealing clearance. The maximum magnetic induction intensity of the OS is 6.25% higher than that of the traditional one. These results provide a reference for designing magnetic liquid sealing devices.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 238
Author(s):  
Huiyuan Yang ◽  
Yongshun Zhang ◽  
Zhenhu Liu ◽  
Xu Liu ◽  
Guanxi Liu

In order to realize the intervention operation in the unstructured and ample environments such as stomach and colon, a dual-spin spherical capsule robot (DSCR) driven by pure magnetic torque generated by the universal rotating magnetic field (URMF) is proposed. The coupled magnetic torque, the viscoelastic friction torque, and the gravity torque were analyzed. Furthermore, the posture dynamic model describing the electric-magnetic-mechanical-liquid coupling dynamic behavior of the DSCR in the gastrointestinal (GI) tract was established. This model is a second-order periodic variable coefficient dynamics equation, which should be regarded as an extension of the Lagrange case for the dual-spin body system under the fixed-point motion, since the external torques were applied. Based on the Floquet–Lyapunov theory, the stability domain of the DSCR for the asymptotically stable motion and periodic motion were obtained by investigating the influence of the angular velocity of the URMF, the magnetic induction intensity, and the centroid deviation. Research results show that the DSCR can realize three kinds of motion, which are asymptotically stable motion, periodic motion, and chaotic motion, according to the distribution of the system characteristic multipliers. Moreover, the posture stability of the DSCR can be improved by increasing the angular velocity of the URMF and reducing the magnetic induction intensity.


2021 ◽  
Vol 261 ◽  
pp. 02033
Author(s):  
Jianping Zhang ◽  
Baodong Ren

In order to further improve the trapping effect of fine particles, a new electrostatic cyclone precipitator (ECP) with magnetic confinement was proposed, the overall efficiencies of fine particles under different operating conditions were numerically simulated, and the influence of working voltage on the dust-removal effect of fine particles with and without magnetic field were discussed. The results show that increasing working voltage or magnetic induction intensity improves the trapping performance of spherical cylindrical magnetically confinement ECP, and the lifting effect gradually weakens while increasing the same amplitude. The results can offer technical reference for the optimization design of greatly improving the ECP dust-removal performance.


2020 ◽  
pp. 2150127
Author(s):  
Dongsheng Yang ◽  
Guanting Liu

Based on the Gurtin–Murdoch surface/interface model and complex potential theory, by constructing a new conformal mapping, the anti-plane fracture problem of three nano-cracks emanating from a magnetoelectrically permeable triangle nano-hole in magnetoelectroelastic materials with surface effect is studied. The exact solutions of the stress intensity factor, the electric displacement intensity factor, the magnetic induction intensity factor, and the energy release rate are obtained under the boundary conditions of magnetoelectrically permeable and impermeable. The numerical examples show the influence of surface effect on the stress intensity factor, the electric displacement intensity factor, the magnetic induction intensity factor, and the energy release rate under two different boundary conditions. It can be seen that the surface effect leads to the coupling of stress, electric and magnetic field, and with the increase of cavity size, the influence of surface effect begins to decrease until it tends to classical elasticity theory.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1620
Author(s):  
Zhuang Li ◽  
Lintao Zhang ◽  
Yanming Bao ◽  
Danzhu Ma

The brake effect of the freestanding adjustable combination electromagnetic brake (FAC-EMBr) and EMBr ruler on the behavior of molten steel flow and the level fluctuation were investigated with the numerical method. The effects of the horizontal magnetic pole position (EMBr ruler), magnetic induction intensity, and casting speed on two types of electromagnetic brakes were studied. The numerical simulation results show that the magnetic field caused by the EMBr ruler is mainly distributed under the submerged entry nozzle (SEN), and it is very weak nearby the meniscus area. After the FAC-EMBr is applied, the magnetic field is mainly distributed in the area below the submerged entry nozzle, the upper roll region, and in the meniscus region. The application of the electromagnetic brake can effectively suppress the impact of the jet and decrease the molten steel velocity in the meniscus area. The brake effect of the EMBr ruler on the behavior of the molten steel flow and the level fluctuation is significantly influenced by the horizontal magnetic pole position. The increasing of the magnetic flux density can significantly increase the velocity of molten steel in the upper roll region and lead to an intense fluctuation in the steel/slag interface, as the horizontal magnetic field cannot cover the three key regions. The brake effect of the FAC-EMBr is less influenced by the variation of the process parameters due to the addition of vertical magnetic poles. Additionally, the “secondary braking effect” of the vertical magnetic poles can help to lower the increase of velocity in the upper roll region caused by the excessive magnetic induction intensity and the high casting speed. Therefore, even under the high casting speed conditions, the application of a new type of FAC-EMBr is also an efficient way to suppress the molten steel flow and level fluctuation at the meniscus area and decrease the possibility of slag entrapment.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Cunfu He ◽  
Wenqiao Dou ◽  
Xiucheng Liu ◽  
Meng Yang ◽  
Ruifang Zhang

AbstractIn the nondestructive testing and evaluation area, magnetic major hysteresis loop measurement technology are widely applied for ferromagnetic material evaluation. However the characterization ability of major hysteresis loop measurement technology greatly varies as the evaluated target properties. To solve this limitation, magnetic minor hysteresis loops, which reflect the responses of ferromagnetic material magnetization in a systematic way, is recommend. Inspired by plenty of information carried by the minor loops, the sensitivity mapping technique was developed to achieve the highest sensitivity of minor-loop parameters to the nondestructively evaluated targets. In this study, for the first time, the sensitivity mapping technique is used to measure the tensile force in a steel strand and evaluate the effective case depth in induction-hardened steel rods. The method and procedures for the sensitivity mapping technique are given before experimental detection. The obtained experimental results indicate that the linear correlation between the induced voltage (or the magnetic induction intensity) and the tensile force (or effective case depth) exists at most of the locations in the cluster of minor loops. The obtained sensitivity maps can be used to optimize the applied magnetic field (or excitation current) and the analyzed locations at the minor loops for achieving the highest sensitivity. For the purpose of tensile force measurement, it is suggested that the strand should be firstly magnetized to the near-saturation state and then restored to the remanent state. In this way, the highest sensitivity is obtained as about 15.26 mV/kN. As for the induction-hardened steel rods, the highest sensitivity of magnetic induction intensity to the effective case depth occurs under low magnetic field conditions and the absolute value of the highest sensitivity is about 0.1110 T/mm. This indicates that if the highest sensitivity is required in the case depth evaluation, the induction-hardened steel rods are only required to be weakly magnetized. The proposed sensitivity mapping technique shows the good performance in the high-sensitivity evaluation of tensile force and case depth in ferromagnetic materials and its application scope can be extended to other nondestructive detection fields.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4226
Author(s):  
Yucai Shi ◽  
Dongyue Jia ◽  
Zhichuan Guan ◽  
Yuqiang Xu ◽  
Weixing Yang ◽  
...  

In the field of petroleum drilling engineering, passive magnetic ranging technology is generally used for specialized drilling operations such as connecting relief wells, preventing wellbore collisions, guiding parallel horizontal wells, etc. Although pre-magnetized casing strings have been used to improve the detection distance and accuracy, the theoretical mechanism is not well understood. Based on the equivalent current model of a permanent magnet, a theoretical magnetic field model around the pre-magnetized casing string was established by using the vector potential method and vector superposition principle and validated by the COMSOL Multiphysics software. Our results show that connecting pre-magnetized individual casings with homogeneous magnetic poles can enlarge the magnetic induction intensity around the total casing string. Furthermore, the magnitude close to the casing coupling is significantly larger than that close to the middle of the individual casing. Connecting pre-magnetized individual casings with heterogeneous magnetic poles results in a low magnetic induction intensity around the total casing string. In order to improve the detection distance and accuracy of the magnetic ranging, the pre-magnetized individual casings should be connected with homogeneous magnetic poles. The results of this study can provide guidelines for the development of passive magnetic ranging technology.


Sign in / Sign up

Export Citation Format

Share Document