scholarly journals The Chromatic Brauer Category and Its Linear Representations

Author(s):  
L. Felipe Müller ◽  
Dominik J. Wrazidlo

AbstractThe Brauer category is a symmetric strict monoidal category that arises as a (horizontal) categorification of the Brauer algebras in the context of Banagl’s framework of positive topological field theories (TFTs). We introduce the chromatic Brauer category as an enrichment of the Brauer category in which the morphisms are component-wise labeled. Linear representations of the (chromatic) Brauer category are symmetric strict monoidal functors into the category of real vector spaces and linear maps equipped with the Schauenburg tensor product. We study representation theory of the (chromatic) Brauer category, and classify all its faithful linear representations. As an application, we use indices of fold lines to construct a refinement of Banagl’s concrete positive TFT based on fold maps into the plane.

2018 ◽  
Vol 30 (02) ◽  
pp. 1850005
Author(s):  
Lukas Müller ◽  
Christoph Schweigert

We give a detailed account of the so-called “universal construction” that aims to extend invariants of closed manifolds, possibly with additional structure, to topological field theories and show that it amounts to a generalization of the GNS construction. We apply this construction to an invariant defined in terms of the groupoid cardinality of groupoids of bundles to recover Dijkgraaf–Witten theories, including the vector spaces obtained as a linearization of spaces of principal bundles.


1990 ◽  
Vol 05 (19) ◽  
pp. 3777-3786 ◽  
Author(s):  
L.F. CUGLIANDOLO ◽  
G. LOZANO ◽  
H. MONTANI ◽  
F.A. SCHAPOSNIK

We discuss the relation between different quantization approaches to topological field theories by deriving a connection between Bogomol’nyi and Langevin equations for stochastic processes which evolve towards an equilibrium state governed by the topological charge.


2017 ◽  
Vol 29 (05) ◽  
pp. 1750015 ◽  
Author(s):  
Samuel Monnier

We construct invertible field theories generalizing abelian prequantum spin Chern–Simons theory to manifolds of dimension [Formula: see text] endowed with a Wu structure of degree [Formula: see text]. After analyzing the anomalies of a certain discrete symmetry, we gauge it, producing topological field theories whose path integral reduces to a finite sum, akin to Dijkgraaf–Witten theories. We take a general point of view where the Chern–Simons gauge group and its couplings are encoded in a local system of integral lattices. The Lagrangian of these theories has to be interpreted as a class in a generalized cohomology theory in order to obtain a gauge invariant action. We develop a computationally friendly cochain model for this generalized cohomology and use it in a detailed study of the properties of the Wu Chern–Simons action. In the 3-dimensional spin case, the latter provides a definition of the “fermionic correction” introduced recently in the literature on fermionic symmetry protected topological phases. In order to construct the state space of the gauged theories, we develop an analogue of geometric quantization for finite abelian groups endowed with a skew-symmetric pairing. The physical motivation for this work comes from the fact that in the [Formula: see text] case, the gauged 7-dimensional topological field theories constructed here are essentially the anomaly field theories of the 6-dimensional conformal field theories with [Formula: see text] supersymmetry, as will be discussed elsewhere.


1991 ◽  
Vol 269 (1-2) ◽  
pp. 116-122 ◽  
Author(s):  
Danny Birmingham ◽  
H.T. Cho ◽  
R. Kantowski ◽  
M. Rakowski

Sign in / Sign up

Export Citation Format

Share Document