Antiapoptotic role of p38 mitogen activated protein kinase in Jurkat T cells and normal human T lymphocytes treated with 8-methoxypsoralen and ultraviolet-A radiation

APOPTOSIS ◽  
2005 ◽  
Vol 10 (1) ◽  
pp. 141-152 ◽  
Author(s):  
A. Cappellini ◽  
P. L. Tazzari ◽  
I. Mantovani ◽  
A. M. Billi ◽  
C. Tassi ◽  
...  
1998 ◽  
Vol 187 (9) ◽  
pp. 1417-1426 ◽  
Author(s):  
Julie A. Frearson ◽  
Denis R. Alexander

Src homology 2 (SH2) domain–containing phosphotyrosine phosphatases (SHPs) are increasingly being shown to play critical roles in protein tyrosine kinase–mediated signaling pathways. The role of SHP-1 as a negative regulator of T cell receptor (TCR) signaling has been established. To further explore the function of the other member of this family, SHP-2, in TCR-mediated events, a catalytically inactive mutant SHP-2 was expressed under an inducible promoter in Jurkat T cells. Expression of the mutant phosphatase significantly inhibited TCR-induced activation of the extracellular-regulated kinase (ERK)-2 member of the mitogen-activated protein kinase (MAPK) family, but had no effect on TCR-ζ chain tyrosine phosphorylation or TCR-elicited Ca2+ transients. Inactive SHP-2 was targeted to membranes resulting in the selective increase in tyrosine phosphorylation of three membrane-associated candidate SHP-2 substrates of 110 kD, 55-60 kD, and 36 kD, respectively. Analysis of immunoprecipitates containing inactive SHP-2 also indicated that the 110-kD and 36-kD Grb-2–associated proteins were putative substrates for SHP-2. TCR-stimulation of Jurkat T cells expressing wild-type SHP-2 resulted in the formation of a multimeric cytosolic complex composed of SHP-2, Grb-2, phosphatidylinositol (PI) 3′-kinase, and p110. A significant proportion of this complex was shown to be membrane associated, presumably as a result of translocation from the cytosol. Catalytically inactive SHP-2, rather than the wild-type PTPase, was preferentially localized in complex with Grb-2 and the p85 subunit of PI 3′-kinase, suggesting that the dephosphorylating actions of SHP-2 may regulate the association of these signaling molecules to the p110 complex. Our results show that SHP-2 plays a critical role in linking the TCR to the Ras/MAPK pathway in Jurkat T cells, and also provide some insight into the molecular interactions of SHP-2 that form the basis of this signal transduction process.


2006 ◽  
Vol 26 (1) ◽  
pp. 230-237 ◽  
Author(s):  
Zheng Ge ◽  
Cheng Liu ◽  
Magnus Björkholm ◽  
Astrid Gruber ◽  
Dawei Xu

ABSTRACT Telomerase activity and telomerase reverse transcriptase (hTERT), the key component of the telomerase complex, are tightly proliferation regulated in normal and malignant cells both in vitro and in vivo; however, underlying mechanisms are unclear. In the present study, we identified mitogen-activated protein kinase (MAPK) cascade-mediated histone H3 ser10 phosphorylation to be a molecular link between proliferation and induction of hTERT/telomerase activity. In normal human T lymphocytes and fibroblasts, growth or stress stimuli known to drive H3 phosphorylation through the MAPK signaling induce hTERT expression and/or telomerase activity that was preceded by phosphorylated histone H3 (ser10) at the hTERT promoter. Blockade of the MAPK-triggered H3 phosphorylation significantly abrogates hTERT induction and ser10 phosphorylation at this promoter. However, H3 ser10 phosphorylation alone resulted in low, transient hTERT induction, as seen in fibroblasts, whereas H3 phosphorylation followed by its acetylation at lys14 robustly trans-activated the hTERT gene accompanying constitutive telomerase activity in normal and malignant T cells. H3 acetylation without phosphorylation similarly exerted weak effects on hTERT expression. These results define H3 phosphorylation as a key to hTERT transactivation induced by proliferation and reveal a fundamental mechanism for telomerase regulation in both normal human cells and transformed T cells.


2005 ◽  
Vol 22 (Supplement 34) ◽  
pp. 127
Author(s):  
M. Roesslein ◽  
T. Loop ◽  
M. Frick ◽  
D. Doviakue ◽  
K. Geiger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document