scholarly journals A bound system in the expanding universe with modified holographic Ricci dark energy and dark matter

2014 ◽  
Vol 355 (1) ◽  
pp. 187-193 ◽  
Author(s):  
En-Kun Li ◽  
Yu Zhang ◽  
Jin-Ling Geng ◽  
Peng-Fei Duan
2013 ◽  
Vol 91 (4) ◽  
pp. 351-354 ◽  
Author(s):  
Antonio Pasqua ◽  
Surajit Chattopadhyay

In this paper, we have studied and investigated the behavior of a modified holographic Ricci dark energy (DE) model interacting with pressureless dark matter (DM) under the theory of modified gravity, dubbed logarithmic f(T) gravity. We have chosen the interaction term between DE and DM in the form Q = 3γHρm and investigated the behavior of the torsion, T, the Hubble parameter, H, the equation of state parameter, ωDE, the energy density of DE, ρDE, and the energy density contribution due to torsion, ρT, as functions of the redshift, z. We have found that T increases with the redshift, z, H increases with the evolution of the universe, ωDE has a quintessence-like behavior, and both energy densities increase going from higher to lower redshifts.


2015 ◽  
Vol 5 (1) ◽  
pp. 51-56 ◽  
Author(s):  
M. Tsizh ◽  
B. Novosyadlyj

We investigate the non-linear evolution of spherical density and velocity perturbations of dark matter and dark energy in the expanding Universe. For this we have used the conservation and Einstein equations to describe the evolution of gravitationally coupled inhomogeneities of dark matter, dark energy and radiation from the linear stage in the early Universe to the non-linear stage at the current epoch. A simple method of numerical integration of the system of non-linear differential equations for evolution of the central part of halo is proposed. The results are presented for the halo of cluster (k=2 Mpc-1) and supercluster scales (k=0.2 Mpc-1) and show that a quintessential scalar field dark energy with a low value of effective speed of sound cs<0.1 can have a notable impact on the formation of large-scale structures in the expanding Universe.


2019 ◽  
Vol 97 (5) ◽  
pp. 477-486 ◽  
Author(s):  
Arkaprabha Majumdar ◽  
Surajit Chattopadhyay

Inspired by the work of Bamba et al. (Phys. Rev. D, 85, 104036 (2012)) the present paper reports a study on the reconstruction of modified holographic Ricci dark energy (MHRDE) in the framework of modified gravity taken as f(T) gravity. A correspondence between modified Chaplygin gas and MHRDE has also been considered and thereinafter the f(T) gravity has been reconstructed via reconstruction of the Hubble parameter. The reconstructed equation of state (EoS) parameter obtained this way has been found to be able to cross the phantom boundary. In the next phase of the work, a viable model of f(T) gravity has been considered and MHRDE has been discussed in this modified gravity frame. The EoS parameter due to the torsion contribution obtained this way has been found to behave like quintessence. The transition of the universe from the dark matter dominated to dark energy (DE) dominated phase is apparent from this model. Also, the model is exhibiting DE domination of the current universe. Finally, the statefinder hierarchy has been discussed through the statefinder and snap parameters. The model has been found to be able to attain the ΛCDM fixed point in the statefinder trajectory.


2020 ◽  
Vol 499 (4) ◽  
pp. 5598-5606
Author(s):  
Paxy George ◽  
Titus K Mathew

ABSTRACT Holographic Ricci dark energy evolving through its interaction with dark matter is a natural choice for the running vacuum energy model. We have analysed the relative significance of two versions of this model in the light of type Ia supernovae (SN1a), the Cosmic Microwave Background (CMB), the Baryonic Acoustic Oscillations (BAO), and Hubble data sets using the method Bayesian inferences. The first one, model 1, is the running holographic Ricci dark energy (rhrde) having a constant additive term in its density form and the second is one, model 2, having no additive constant, instead the interaction of rhrde with dark matter (ΛCDM) is accounted through a phenomenological coupling term. The Bayes factor of these models in comparison with the standard Lambda cold dark matter have been obtained by calculating the likelihood of each model for four different data combinations, SNIa(307)+CMB+BAO, SNIa(307)+CMB+BAO+Hubble data, SNIa(580)+CMB+BAO, and SNIa(580)+CMB+BAO+Hubble data. Suitable flat priors for the model parameters has been assumed for calculating the likelihood in both cases. Our analysis shows that, according to the Jeffreys scale, the evidence for ΛCDM against both model 1 and model 2 is very strong as the Bayes factor of both models are much less than one for all the data combinations.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Tong-Jie Zhang ◽  
Cong Ma ◽  
Tian Lan

This paper is a review on the observational Hubble parameter data that have gained increasing attention in recent years for their illuminating power on the dark side of the universe: the dark matter, dark energy, and the dark age. Currently, there are two major methods of independent observationalH(z)measurement, which we summarize as the “differential age method” and the “radial BAO size method.” Starting with fundamental cosmological notions such as the spacetime coordinates in an expanding universe, we present the basic principles behind the two methods. We further review the two methods in greater detail, including the source of errors. We show how the observationalH(z)data present itself as a useful tool in the study of cosmological models and parameter constraint, and we also discuss several issues associated with their applications. Finally, we point the reader to a future prospect of upcoming observation programs that will lead to some major improvements in the quality of observationalH(z)data.


Sign in / Sign up

Export Citation Format

Share Document