Two new exact solutions for relativistic perfect fluid spheres through Lake’s algorithm

2014 ◽  
Vol 355 (2) ◽  
pp. 303-308
Author(s):  
S. K. Maurya ◽  
Y. K. Gupta ◽  
M. K. Jasim
2013 ◽  
Vol 22 (02) ◽  
pp. 1350009 ◽  
Author(s):  
LI ZOU ◽  
FANG-YU LI ◽  
HAO WEN

Exact solutions of the Einstein–Maxwell equations for spherically symmetric charged perfect fluid have been broadly studied so far. However, the cases with a nonzero cosmological constant are seldom focused. In the present paper, the Tolman–Oppenheimer–Volkoff (TOV) equations have been generalized from the neutral case of hydrostatic equilibrium to the charged case of hydroelectrostatic equilibrium, and base on it, for the first time we find a series of new exact solutions of Einstein–Maxwell's equations with a nonzero cosmological constant for static charged perfect fluid spheres. Moreover, two special TOV equations and two classical constant density interior solutions are also given.


2012 ◽  
Vol 27 (25) ◽  
pp. 1250138 ◽  
Author(s):  
M. SHARIF ◽  
SADIA ARIF

We investigate some exact static cylindrically symmetric solutions for a perfect fluid in the metric f(R) theory of gravity. For this purpose, three different families of solutions are explored. We evaluate energy density, pressure, Ricci scalar and functional form of f(R). It is interesting to mention here that two new exact solutions are found from the last approach, one is in particular form and the other is in the general form. The general form gives a complete description of a cylindrical star in f(R) gravity.


2013 ◽  
Vol 22 (09) ◽  
pp. 1350052 ◽  
Author(s):  
SUDAN HANSRAJ ◽  
DANIEL KRUPANANDAN

Although it ranks amongst the oldest of problems in classical general relativity, the challenge of finding new exact solutions for spherically symmetric perfect fluid spacetimes is still ongoing because of a paucity of solutions which exhibit the necessary qualitative features compatible with observational evidence. The problem amounts to solving a system of three partial differential equations in four variables, which means that any one of four geometric or dynamical quantities must be specified at the outset and the others should follow by integration. The condition of pressure isotropy yields a differential equation that may be interpreted as second-order in one of the space variables or also as first-order Ricatti type in the other space variable. This second option has been fruitful in allowing us to construct an algorithm to generate a complete solution to the Einstein field equations once a geometric variable is specified ab initio. We then demonstrate the construction of previously unreported solutions and examine these for physical plausibility as candidates to represent real matter. In particular we demand positive definiteness of pressure, density as well as a subluminal sound speed. Additionally, we require the existence of a hypersurface of vanishing pressure to identify a radius for the closed distribution of fluid. Finally, we examine the energy conditions. We exhibit models which display all of these elementary physical requirements.


2021 ◽  
Author(s):  
◽  
Petarpa Boonserm

<p><b>In this thesis four separate problems in general relativity are considered, dividedinto two separate themes: coordinate conditions and perfect fluid spheres. Regardingcoordinate conditions we present a pedagogical discussion of how the appropriateuse of coordinate conditions can lead to simplifications in the form of the spacetimecurvature — such tricks are often helpful when seeking specific exact solutions of theEinstein equations. Regarding perfect fluid spheres we present several methods oftransforming any given perfect fluid sphere into a possibly new perfect fluid sphere.</b></p> <p>This is done in three qualitatively distinct manners: The first set of solution generatingtheorems apply in Schwarzschild curvature coordinates, and are phrased in termsof the metric components: they show how to transform one static spherical perfectfluid spacetime geometry into another. A second set of solution generating theoremsextends these ideas to other coordinate systems (such as isotropic, Gaussian polar,Buchdahl, Synge, and exponential coordinates), again working directly in terms of themetric components. Finally, the solution generating theorems are rephrased in termsof the TOV equation and density and pressure profiles. Most of the relevant calculationsare carried out analytically, though some numerical explorations are also carriedout.</p>


2021 ◽  
Author(s):  
◽  
Petarpa Boonserm

<p><b>In this thesis four separate problems in general relativity are considered, dividedinto two separate themes: coordinate conditions and perfect fluid spheres. Regardingcoordinate conditions we present a pedagogical discussion of how the appropriateuse of coordinate conditions can lead to simplifications in the form of the spacetimecurvature — such tricks are often helpful when seeking specific exact solutions of theEinstein equations. Regarding perfect fluid spheres we present several methods oftransforming any given perfect fluid sphere into a possibly new perfect fluid sphere.</b></p> <p>This is done in three qualitatively distinct manners: The first set of solution generatingtheorems apply in Schwarzschild curvature coordinates, and are phrased in termsof the metric components: they show how to transform one static spherical perfectfluid spacetime geometry into another. A second set of solution generating theoremsextends these ideas to other coordinate systems (such as isotropic, Gaussian polar,Buchdahl, Synge, and exponential coordinates), again working directly in terms of themetric components. Finally, the solution generating theorems are rephrased in termsof the TOV equation and density and pressure profiles. Most of the relevant calculationsare carried out analytically, though some numerical explorations are also carriedout.</p>


2014 ◽  
Vol 356 (1) ◽  
pp. 75-87 ◽  
Author(s):  
S. K. Maurya ◽  
Y. K. Gupta ◽  
Baiju Dayanandan ◽  
T. T. Smitha

Author(s):  
Sobia Younus

<span>Some new exact solutions to the equations governing the steady plane motion of an in compressible<span> fluid of variable viscosity for the chosen form of the vorticity distribution are determined by using<span> transformation technique. In this case the vorticity distribution is proportional to the stream function<span> perturbed by the product of a uniform stream and an exponential stream<br /><br class="Apple-interchange-newline" /></span></span></span></span>


Sign in / Sign up

Export Citation Format

Share Document