Shake table tests on the two-storey dry-joint stone masonry structures reinforced with timber laces and steel wires

2018 ◽  
Vol 17 (4) ◽  
pp. 2199-2218
Author(s):  
Ming Wang ◽  
Kai Liu ◽  
Ramesh Guragain ◽  
Hima Shrestha ◽  
Xiaowei Ma
2013 ◽  
Vol 29 (4) ◽  
pp. 1159-1181 ◽  
Author(s):  
Qaisar Ali ◽  
Akhtar Naeem Khan ◽  
Mohammad Ashraf ◽  
Awais Ahmed ◽  
Bashir Alam ◽  
...  

Rubble-stone masonry structures are found abundantly in the Asian countries along the Himalayan range. Such structures are usually constructed in dry-stone masonry or are constructed in mud mortar, which makes them susceptible to damage and collapse in earthquakes. In order to study the seismic behavior of these structures, dynamic shake table tests on three reduced-scale rubble-stone masonry models were conducted. The models comprised a representative school building, a residential building, and a model incorporating simple cost-effective features in the form of horizontal and vertical reinforced concrete elements. This paper presents the results of shake table tests carried out on rubble-stone masonry buildings including: damage pattern, capacity curves, damage limit states, and response modification factors of these structures. Test data indicates that seismic performance of rubble-stone masonry structures can be significantly improved by incorporating cost-effective features such as vertical members and relatively thin horizontal bands.


2019 ◽  
Vol 817 ◽  
pp. 342-349
Author(s):  
Stefano de Santis ◽  
Gianmarco de Felice ◽  
Garis Lorenzo Di Noia ◽  
Pietro Meriggi ◽  
Marika Volpe

Recent earthquakes have dramatically shown the seismic vulnerability of existing masonry structures and highlighted the urgent need of developing suitable strengthening solutions. In order to gain an improved understanding of the seismic response of masonry constructions and of the most appropriate technologies for their retrofitting, a shake table test was performed on a full-scale U-shaped tuff masonry structure, provided with an asymmetric plan with openings and with an inclined roof. The specimen was tested unreinforced and then repaired and retrofitted with composite reinforced mortar (CRM), comprised of a glass fibre reinforced polymer mesh applied with a lime mortar. Natural accelerograms were applied with increasing scale factor to collapse. Results provided information on the dynamic behaviour of masonry structures strengthened with CRM and on the enhancement of seismic performance provided by the retrofitting work.


2017 ◽  
Vol 15 (10) ◽  
pp. 4299-4317 ◽  
Author(s):  
Marta Giaretton ◽  
Maria Rosa Valluzzi ◽  
Nicola Mazzon ◽  
Claudio Modena

2021 ◽  
pp. 102886
Author(s):  
Jianyang Xue ◽  
Pengchun Hu ◽  
Fengliang Zhang ◽  
Yan Zhuge

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used for an extended period may develop degradations such as wall thinning or cracks due to aging. It is important to estimate the effects of degradation on the dynamic behavior and to ascertain the failure modes and remaining strength of the piping systems with degradation through experiments and analyses to ensure the seismic safety of degraded piping systems under destructive seismic events. In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned-wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of the piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned-wall elbow, because the life of the piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


1998 ◽  
Vol 31 (10) ◽  
pp. 676-682 ◽  
Author(s):  
Y. L. Mo ◽  
W. L. Hwang

2014 ◽  
Vol 23 (12) ◽  
pp. 125002 ◽  
Author(s):  
Y M Parulekar ◽  
A Ravi Kiran ◽  
G R Reddy ◽  
R K Singh ◽  
K K Vaze

Sign in / Sign up

Export Citation Format

Share Document