Doppler Mapping of Blood Flow in Soft Biological Tissues Based on Digital Processing of Raw Data Obtained by Real-Time Optical Coherence Tomography

Author(s):  
S. V. Frolov ◽  
A. Yu. Potlov
2003 ◽  
Vol 11 (23) ◽  
pp. 3116 ◽  
Author(s):  
R. A. Leitgeb ◽  
L. Schmetterer ◽  
W. Drexler ◽  
A. F. Fercher ◽  
R. J. Zawadzki ◽  
...  

2014 ◽  
Author(s):  
William J. Kowalski ◽  
Nikola C. Teslovich ◽  
Chia-Yuan Chen ◽  
Bradley B. Keller ◽  
Kerem Pekkan

2004 ◽  
Author(s):  
Rainer Leitgeb ◽  
Leopold Schmetterer ◽  
Wolfgang Drexler ◽  
Fatmire Berisha ◽  
Christoph K. Hitzenberger ◽  
...  

Author(s):  
Rajgopal Mani ◽  
Jon Holmes ◽  
Kittipan Rerkasem ◽  
Nikolaos Papanas

Dynamic optical coherence tomography (D-OCT) is a relatively new technique that may be used to study the substructures in the retina, in the skin and its microcirculation. Furthermore, D-OCT is a validated method of imaging blood flow in skin microcirculation. The skin around venous and mixed arterio-venous ulcers was imaged and found to have tortuous vessels assumed to be angiogenic sprouts, and classified as dots, blobs, coils, clumps, lines, and curves. When these images were analyzed and measurements of vessel density were made, it was observed that the prevalence of coils and clumps in wound borders was significantly greater compared with those at wound centers. This reinforced the belief of inward growth of vessels from wound edge toward wound center which, in turn, reposed confidence in following the wound edge to study healing. D-OCT imaging permits the structure and the function of the microcirculation to be imaged, and vessel density measured. This offers a new vista of skin microcirculation and using it, to better understand angiogenesis in chronic wounds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jang Ryul Park ◽  
ByungKun Lee ◽  
Min Ji Lee ◽  
Kyuseok Kim ◽  
Wang-Yuhl Oh

AbstractWe developed a method to measure the relative blood flow speed using optical coherence tomography angiography (OCTA) in retina and choroid, and investigated the feasibility of this method for assessing microcirculatory function in rat models of sepsis and hemorrhagic shock. Two sepsis models, 6-h severe sepsis without treatment and 30-h moderate sepsis maintaining mean arterial pressure, and volume controlled hemorrhagic shock and fluid resuscitation model were used to see the change of microcirculation. The blood flow index (BFI), which was calculated from the OCTA images to represent the average relative blood flow, was decreasing during the 6-h severe sepsis model. Its change is in parallel with the mean arterial blood pressure (MAP) and blood lactate levels. In the 30-h moderate sepsis model, the BFI was decreased while maintaining MAP, and lactate was increased. In the hemorrhagic shock model, the change of BFI is in line with MAP and lactate levels. In all models, BFI change is more sensitive in choroid than in retina. This study presents the OCTA-based retinal and choroidal microcirculatory blood flow monitoring method and shows its utility for assessment of critical illness.


Sign in / Sign up

Export Citation Format

Share Document