Archaeal and bacterial community structures of rural household biogas digesters with different raw materials in Qinghai Plateau

Author(s):  
Rui Han ◽  
Li Liu ◽  
Yan Meng ◽  
Hairong Han ◽  
Rongbo Xiong ◽  
...  
1999 ◽  
Vol 65 (8) ◽  
pp. 3566-3574 ◽  
Author(s):  
Sarah J. MacNaughton ◽  
John R. Stephen ◽  
Albert D. Venosa ◽  
Gregory A. Davis ◽  
Yun-Juan Chang ◽  
...  

ABSTRACT Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil spill. Four treatments (no oil control, oil alone, oil plus nutrients, and oil plus nutrients plus an indigenous inoculum) were applied. In situ microbial community structures were monitored by phospholipid fatty acid (PLFA) analysis and 16S rDNA PCR-denaturing gradient gel electrophoresis (DGGE) to (i) identify the bacterial community members responsible for the decontamination of the site and (ii) define an end point for the removal of the hydrocarbon substrate. The results of PLFA analysis demonstrated a community shift in all plots from primarily eukaryotic biomass to gram-negative bacterial biomass with time. PLFA profiles from the oiled plots suggested increased gram-negative biomass and adaptation to metabolic stress compared to unoiled controls. DGGE analysis of untreated control plots revealed a simple, dynamic dominant population structure throughout the experiment. This banding pattern disappeared in all oiled plots, indicating that the structure and diversity of the dominant bacterial community changed substantially. No consistent differences were detected between nutrient-amended and indigenous inoculum-treated plots, but both differed from the oil-only plots. Prominent bands were excised for sequence analysis and indicated that oil treatment encouraged the growth of gram-negative microorganisms within the α-proteobacteria andFlexibacter-Cytophaga-Bacteroides phylum. α-Proteobacteria were never detected in unoiled controls. PLFA analysis indicated that by week 14 the microbial community structures of the oiled plots were becoming similar to those of the unoiled controls from the same time point, but DGGE analysis suggested that major differences in the bacterial communities remained.


2011 ◽  
Vol 108 (10) ◽  
pp. 4158-4163 ◽  
Author(s):  
J. J. Werner ◽  
D. Knights ◽  
M. L. Garcia ◽  
N. B. Scalfone ◽  
S. Smith ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Yoshitaka Uchida ◽  
Hirosato Mogi ◽  
Toru Hamamoto ◽  
Miwako Nagane ◽  
Misato Toda ◽  
...  

Riverbank soil ecosystems are important zones in terms of transforming inorganic nitrogen (N), particularly nitrate (NO3−-N), in soils to nitrous oxide (N2O) gases. Thus, the gasification of N in the riverbank soil ecosystems may produce a greenhouse gas, N2O, when the condition is favourable for N2O-producing microbes. One of the major N2O-producing pathways is denitrification. Thus, we investigated the denitrification potentials along Shibetsu River, Hokkaido, Japan. We sampled riverbank soils from eight sites along the Shibetsu River. Their denitrification potentials with added glucose-carbon (C) and NO3−-N varied from 4.73 to 181 μg·N·kg−1·h−1. The increase of the denitrification after the addition of C and N was negatively controlled by soil pH and positively controlled by soil NH4+-N levels. Then, we investigated the changes in 16S rRNA bacterial community structures before and after an anaerobic incubation with added C and N. We investigated the changes in bacterial community structures, aiming to identify specific microbial species related to high denitrification potentials. The genus Gammaproteobacteria AeromonadaceaeTolumonaswas markedly increased, from 0.0 ± 0.0% to 16 ± 17%, before and after the anaerobic incubation with the excess substrates, when averaged across all the sites. Although we could not find a significant interaction between the denitrification potential and the increase rate of G. AeromonadaceaeTolumonas, our study suggested that along the Shibetsu River, bacterial response to added excess substrates was similar at the genus level. Further studies are needed to investigate whether this is a universal phenomenon even in other rivers.


2018 ◽  
Vol 81 (9) ◽  
pp. 1557-1564
Author(s):  
LINLIN JIANG ◽  
JIANLONG ZHANG ◽  
JINXIU TANG ◽  
MENG LI ◽  
XIAOYU ZHAO ◽  
...  

ABSTRACT The aim of the present study was to analyze the aerosol concentrations and microbial community structures in closed cage broiler houses at different broiler growth stages to assess the dynamic pattern of microbial aerosols in closed cage systems. Our results revealed that the total concentration of bacterial aerosols gradually increased during the growth cycle of broilers. High-throughput sequencing of 16S rDNA revealed that microbial compositions differed tremendously during different growth stages, although Firmicutes and Proteobacteria were the dominant taxa in samples from all broiler growth stages. At the genus level, dominant phylotypes displayed great variation during different growth stages. Escherichia and Shigella were the most dominant taxa throughout the growth cycle, increasing from 4.3 to 12.4% as the broilers grew. The alpha index revealed that the microbial diversity displayed significant differences between the different growth stages and that the bacterial community had the highest diversity when broilers were 22 days old. High-throughput sequencing analyses revealed that environmental microbes and opportunistic pathogens had relatively high abundances during the winter growth period. The data revealed the composition and aerodynamic diameters of microbial aerosols in closed cage broiler houses at different broiler growth stages in winter. The results also enabled us to elucidate the dynamic pattern of microbial aerosols in broiler houses in response to bacterial communities. Our results may provide a basis for developing technologies for air quality control in caged poultry houses.


2010 ◽  
Vol 98 (3) ◽  
pp. 403-413 ◽  
Author(s):  
R. S. Peixoto ◽  
G. M. Chaer ◽  
N. Franco ◽  
F. B. Reis Junior ◽  
I. C. Mendes ◽  
...  

2020 ◽  
Vol 158 ◽  
pp. 106067
Author(s):  
Yerang Yang ◽  
Seung-Hoon Lee ◽  
Inyoung Jang ◽  
Hojeong Kang

2019 ◽  
Vol 11 (16) ◽  
pp. 4428 ◽  
Author(s):  
Lin Tan ◽  
Songsong Gu ◽  
Shi Li ◽  
Zuohua Ren ◽  
Ye Deng ◽  
...  

Soil microorganisms play important roles in the plant health and agricultural production. However, little is known about the complex responses of microbial communities and interaction networks to different agricultural management practices in tea plantation soils. In the present study, Illumina Miseq high-throughput sequencing technology and molecular ecological network (MEN) analysis were used to investigate the soil microbial diversity, community structure and composition, interaction networks of organic tea plantation (OTP), non-polluted tea plantation (NPTP) and conventional tea plantation (CTP). Alpha-diversity indices, Chao1 and richness, of OTP soil were significantly higher than those of NPTP and CTP soils. The beta-diversity analysis showed there were significant differences among bacterial community structures of OTP, NPTP and CTP soils. Composition analysis showed that Proteobacteria, Acidobacteria and Chloroflexi were the most dominant bacteria in all tea plantation soil samples under different management practices, and the beneficial community compositions of OTP soil were significantly different from NPTP and CTP soils at the phylum and genus levels. Canonical correspondence analysis (CCA) and mantel test revealed that TOC and NO3-N contents as well as pH values were the key soil factors to affect the bacterial community structures of tea plantation soils. Furthermore, network analysis showed that the network of OTP soil possessed more functionally interrelated microbial modules than NPTP and CTP soils, indicating that OTP soil possessed the higher ecosystem multi-functionality. These results provided the theoretical basis and reference for improving soil microbial diversity and enhancing community multi-functionality in tea plantation soil ecosystems through effective agricultural management practices.


2017 ◽  
Vol 82 (4) ◽  
pp. 960-968 ◽  
Author(s):  
Mi-Hwa Lee ◽  
Fan-Zhu Li ◽  
Jiyeon Lee ◽  
Jisu Kang ◽  
Seong-Il Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document