Assessing the efficacy of aerial culling of introduced wild deer in New Zealand with analytical decomposition of predation risk

2017 ◽  
Vol 20 (1) ◽  
pp. 251-266 ◽  
Author(s):  
A. David M. Latham ◽  
M. Cecilia Latham ◽  
Dan Herries ◽  
Mandy Barron ◽  
Jenyffer Cruz ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
◽  
Brittany Florence-Bennett

<p>Wildlife management is fraught with challenges due to the complexities of community ecology. Interventions aimed at restoring ecosystems, or managing species, can have unintended negative outcomes for target species. The effect of avian predation on native lizard fauna in New Zealand is not clearly understood, despite birds being regarded as top predators within mammal-free ecosystems. At least thirty-one species of bird have been recorded preying on native lizards, but few studies have directly addressed avian predation on lizards, with the majority of evidence sourced from published anecdotes. New Zealand’s herpetofauna are already vulnerable due to range contractions resulting from mammalian predation and habitat loss, with 87% of New Zealand lizard species considered ‘At Risk’ or ‘Threatened’. Understanding the risks posed to lizards will help to inform successful management of vulnerable populations.  I used lizard-mimicking replicas to identify and assess predation rates exerted by bird species on lizard populations within the Wellington region of New Zealand. I examined the use of lizard replicas as a tool to quantify predation by examining how birds interacted with replicas and comparing attack rates with novel items simultaneously placed in the field. I determined which bird species were preying on replicas, the extent of such predation, and whether site vegetation or daily weather influenced the probability of avian attack on replicas. Although attack frequency did not differ between novel items and lizard replicas, birds exhibited a realistic predatory response by preferentially attacking the head of lizard replicas. Interactions by birds with lizard-mimicking replicas cannot be confirmed as true predation attempts, but lizard replicas can nevertheless be used to quantify predation pressures exerted on lizard populations by opportunistic bird species.   Seven ground-foraging bird species were found to attack lizard replicas. Two species, the pūkeko (Porphyrio melanotus melanotus) and southern black-backed gull (Larus dominicanus dominicanus), were identified as high impact species. The average predation risk experienced by lizard replicas varied greatly across environments, with 0 – 25% of replicas attacked daily at sites. Canopy cover and daily rainfall were not significant predictors, but potentially decreased the likelihood of replica attack. Predation risk varied for lizard replicas as a result of differing assemblages of bird predators at sites, and the presence and foraging behaviour of specific predatory birds.   Predation by birds is likely to be an issue where predation pressure is high, or lizard populations are small, range restricted, or recovering from the presence of mammalian predators. When managing vulnerable lizard populations, managers should take into account the threats posed by avian predators so that lizard communities can recover successfully following the same trajectory as native birds.</p>


2015 ◽  
Vol 61 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Mailee Stanbury ◽  
James V. Briskie

Abstract Although it is well known that birds can assess predation risk through visual and auditory cues, there has been little research into whether similar processes occur with olfactory cues. We examined the role of odor cues in assessing nest predation risk in four species of passerine birds in New Zealand. We compared the ability of two introduced European species (common starling Sturnus vulgaris and song thrush Turdus philomelos) and two native New Zealand species (rifleman Acanthisitta chloris and South Island robin Petroica australis) to respond to the scent of rat urine placed in the nest. Rats are an introduced predator in New Zealand and we expected the native birds, which did not co-evolve with any mammalian predators, to lack behavioral adaptations to the scent of rats at their nest. As expected, both riflemen and robins failed to show any change in their behavior at their nest when rat urine was present compared to a control period in which no scent was present. However, a similar lack of response was observed in the introduced song thrush; only the common starling changed its behavior in the presence of the rat urine. Starlings with rat urine at the nest box were more likely to hesitate before entering and they also approached the nest, but refused to enter more often in the presence of rat scent. Both responses suggest they detected the presence of a predator and changed their behavior to minimize risk to themselves. Although based on a small number of species, our results suggest that responses to predator scent may be less common in New Zealand species, and may be a factor contributing to the vulnerability of native birds to introduced mammalian predators.


2019 ◽  
Author(s):  
Vadim A. Karatayev ◽  
Marissa L. Baskett ◽  
David J. Kushner ◽  
Nicholas T. Shears ◽  
Jennifer E. Caselle ◽  
...  

AbstractEcosystem patterning can arise from environmental heterogeneity, biological feedbacks that produce multiple persistent ecological states, or their interaction. One source of feedbacks is density-dependent changes in behavior that regulates species interactions. By fitting dynamical models to large-scale (~500km) surveys on temperate rocky reefs, we find that behavioral feedbacks best explain why kelp and urchin barrens form either reef-wide patches or local mosaics. Best-supported models in California include feedbacks where starvation intensifies grazing across entire reefs create reef-scale, alternatively stable kelp- and urchin-dominated states (39% of sites). Best-fitting models in New Zealand include the feedback of urchins avoiding dense kelp stands that can increase abrasion and predation risk, which drives a transition from shallower urchin-dominated to deeper kelp-dominated zones, with patchiness at 3-8m depths with intermediate wave stress. Connecting locally-studied processes with region-wide data, we highlight how behavior can explain community patterning and why some systems exhibit community-wide alternative stable states.


2021 ◽  
Author(s):  
◽  
Baylee Wade

<p>Climate driven threats are predicted to decrease the complexity of biogenic habitats. Within temperate coastal marine environments, we know that complex macroalgal beds support more complex communities through the provision of microhabitats and refuges. Macroalgal habitats have potential interacting benefits and costs for predators, as increased macroalgal biomass supports higher richness and diversity of prey species, but prey within these habitats might be more difficult to catch. An important New Zealand fishery species, the blue cod (Parapercis colias), is a large bodied temperate reef fish found exclusively throughout the coastal waters of New Zealand. Its dependence on subtidal coastal reef environments mean that it is important to understand how a loss of complex macroalgal habitats might alter the way that blue cod forage, and how the trade-off between prey abundance and availability will affect its abundance and productivity. This thesis aims to understand the influence of complex macroalgal habitats on P. colias prey availability and behaviour, on the foraging success of P. colias, and ultimately on P. colias population dynamics. Experiments were conducted using choice chambers to evaluate whether two alternate P. colias prey, Forsterygion lapillum and Heterozius rotundifrons, showed a preference for complex habitats with and without predation risk. Both species preferred complex habitats in the absence of predation cues, but F. lapillum showed a more consistent preference for complexity in response to predation risk. A mesocosm experiment was used to investigate whether the consumption rate and functional response of P. colias differs for these two prey types in the presence and absence of habitat complexity. Results indicated that the mobile fish prey, F. lapillum benefitted from the refuges provided by complexity and suffered lower consumption rates, whereas the sedentary crab, H. rotundifrons did not. Finally, using a simple population model, the trade-off between prey abundance and predation success on the population dynamics of P. colias with and without habitat complexity was explored. Models showed that scenarios with complex macroalgal habitats generally support more predators, and faster population growth rates than scenarios lacking habitat complexity. However, scenarios with complex habitats were predicted to be more sensitive to fishing pressure and have the potential to be more vulnerable to overexploitation. These results highlight the importance of understanding how habitat complexity mediates relationships between commercially important fishery species and their prey, in order to understand how habitat loss may alter their foraging success and population dynamics.</p>


2021 ◽  
Author(s):  
◽  
Brittany Florence-Bennett

<p>Wildlife management is fraught with challenges due to the complexities of community ecology. Interventions aimed at restoring ecosystems, or managing species, can have unintended negative outcomes for target species. The effect of avian predation on native lizard fauna in New Zealand is not clearly understood, despite birds being regarded as top predators within mammal-free ecosystems. At least thirty-one species of bird have been recorded preying on native lizards, but few studies have directly addressed avian predation on lizards, with the majority of evidence sourced from published anecdotes. New Zealand’s herpetofauna are already vulnerable due to range contractions resulting from mammalian predation and habitat loss, with 87% of New Zealand lizard species considered ‘At Risk’ or ‘Threatened’. Understanding the risks posed to lizards will help to inform successful management of vulnerable populations.  I used lizard-mimicking replicas to identify and assess predation rates exerted by bird species on lizard populations within the Wellington region of New Zealand. I examined the use of lizard replicas as a tool to quantify predation by examining how birds interacted with replicas and comparing attack rates with novel items simultaneously placed in the field. I determined which bird species were preying on replicas, the extent of such predation, and whether site vegetation or daily weather influenced the probability of avian attack on replicas. Although attack frequency did not differ between novel items and lizard replicas, birds exhibited a realistic predatory response by preferentially attacking the head of lizard replicas. Interactions by birds with lizard-mimicking replicas cannot be confirmed as true predation attempts, but lizard replicas can nevertheless be used to quantify predation pressures exerted on lizard populations by opportunistic bird species.   Seven ground-foraging bird species were found to attack lizard replicas. Two species, the pūkeko (Porphyrio melanotus melanotus) and southern black-backed gull (Larus dominicanus dominicanus), were identified as high impact species. The average predation risk experienced by lizard replicas varied greatly across environments, with 0 – 25% of replicas attacked daily at sites. Canopy cover and daily rainfall were not significant predictors, but potentially decreased the likelihood of replica attack. Predation risk varied for lizard replicas as a result of differing assemblages of bird predators at sites, and the presence and foraging behaviour of specific predatory birds.   Predation by birds is likely to be an issue where predation pressure is high, or lizard populations are small, range restricted, or recovering from the presence of mammalian predators. When managing vulnerable lizard populations, managers should take into account the threats posed by avian predators so that lizard communities can recover successfully following the same trajectory as native birds.</p>


2021 ◽  
Author(s):  
◽  
Baylee Wade

<p>Climate driven threats are predicted to decrease the complexity of biogenic habitats. Within temperate coastal marine environments, we know that complex macroalgal beds support more complex communities through the provision of microhabitats and refuges. Macroalgal habitats have potential interacting benefits and costs for predators, as increased macroalgal biomass supports higher richness and diversity of prey species, but prey within these habitats might be more difficult to catch. An important New Zealand fishery species, the blue cod (Parapercis colias), is a large bodied temperate reef fish found exclusively throughout the coastal waters of New Zealand. Its dependence on subtidal coastal reef environments mean that it is important to understand how a loss of complex macroalgal habitats might alter the way that blue cod forage, and how the trade-off between prey abundance and availability will affect its abundance and productivity. This thesis aims to understand the influence of complex macroalgal habitats on P. colias prey availability and behaviour, on the foraging success of P. colias, and ultimately on P. colias population dynamics. Experiments were conducted using choice chambers to evaluate whether two alternate P. colias prey, Forsterygion lapillum and Heterozius rotundifrons, showed a preference for complex habitats with and without predation risk. Both species preferred complex habitats in the absence of predation cues, but F. lapillum showed a more consistent preference for complexity in response to predation risk. A mesocosm experiment was used to investigate whether the consumption rate and functional response of P. colias differs for these two prey types in the presence and absence of habitat complexity. Results indicated that the mobile fish prey, F. lapillum benefitted from the refuges provided by complexity and suffered lower consumption rates, whereas the sedentary crab, H. rotundifrons did not. Finally, using a simple population model, the trade-off between prey abundance and predation success on the population dynamics of P. colias with and without habitat complexity was explored. Models showed that scenarios with complex macroalgal habitats generally support more predators, and faster population growth rates than scenarios lacking habitat complexity. However, scenarios with complex habitats were predicted to be more sensitive to fishing pressure and have the potential to be more vulnerable to overexploitation. These results highlight the importance of understanding how habitat complexity mediates relationships between commercially important fishery species and their prey, in order to understand how habitat loss may alter their foraging success and population dynamics.</p>


1995 ◽  
Vol 52 (9) ◽  
pp. 1821-1833 ◽  
Author(s):  
Angus R. McIntosh ◽  
Colin R. Townsend

Alterations in the predation risk affecting macroinvertebrates in streams of the Taieri River system of New Zealand were assessed following the replacement of native common river galaxias (Galaxias vulgaris) in many sites by introduced brown trout (Salmo trutta). In laboratory channels, galaxias foraged on mayfly nymphs from benthic positions; they searched for prey at night but stayed in cover during the day except when attacking prey. Trout foraged from positions in the water column during day and night. There were no diel differences in foraging by galaxias but trout had higher reaction distances and consumed more during the day. No diel pattern was found in trout stomach contents in the field, probably because of a nocturnal increase in prey availability. Trout and galaxias populations in the field consumed similar biomasses of aquatic prey. However, these experiments indicate there have been subtle changes in the predation regime. Trout relied on visual cues to capture prey so predation risk was higher during the day and larger prey items were more at risk. In comparison, galaxias relied more on mechanical cues to capture prey and predation risk was similar during day and night.


2010 ◽  
Vol 37 (2) ◽  
pp. 89 ◽  
Author(s):  
Deborah J. Wilson ◽  
William G. Lee

Context. Rodent populations in many parts of the world fluctuate in response to resource pulses generated by periodic high seed production (masting) by forest trees, with cascading effects on predation risk to other forest species. In New Zealand forests, populations of exotic house mice (Mus musculus) irrupt after periodic heavy beech (Nothofagus spp.) seedfall. However, in alpine grasslands, where snow tussock grasses (Chionochloa spp.) also flower and set seeds periodically, little is known about house mouse population dynamics. Aims. Our primary objective was to test for an increase in alpine mouse density following a summer when snow tussocks flowered profusely. We also estimated mouse density in adjacent montane forest over 2 years, and assessed mouse diet, to predict their potential impacts on native species. Methods. Flowering intensity of Chionochloa was assessed by counting flowering tillers on permanent transects (2003–06). Mouse density was estimated with capture–mark–recapture trapping in alpine (2003–07) and forest (2003–04) habitats. Mice were also collected and their stomach contents analysed. Flowering or fruiting of alpine shrubs and herbs, and beech seedfall at forest sites, were also measured. Key results. Chionochloa flowered profusely in austral summer 2005/06. Between autumn (May) and spring (November) 2006, mean alpine mouse density increased from 4 ha–1 to 39 ha–1, then declined to 8 ha–1 by autumn (May 2007). No mice were captured in 768 trap-nights during the following spring (November 2007). Prior to the mouse irruption, mouse density was consistently higher at alpine (0.4–4.0 mice ha–1) than at montane forest (0.02–1.8 mice ha–1) sites (in 2003–04). Alpine mouse diet was dominated by arthropods before mast flowering, and by seeds during it. Conclusions. The density and dynamics of alpine mice in relation to intensive snow-tussock flowering were similar to those in New Zealand beech forest in relation to beech masts. Implications. We predict the timing and duration of periods of heightened predation risk to native alpine fauna, as the result of pulses in mouse density and likely associated pulses in the density of stoats (Mustela erminea), a key exotic predator.


Sign in / Sign up

Export Citation Format

Share Document