new zealand birds
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

2019 ◽  
Vol 8 (18) ◽  
Author(s):  
David A. Wilkinson ◽  
Anne C. Midwinter ◽  
Errol Kwan ◽  
Samuel J. Bloomfield ◽  
Nigel P. French ◽  
...  

Campylobacter spp. are frequently found associated with the avian intestinal tract. Most are commensals, but some can cause human campylobacteriosis.


2018 ◽  
Vol 45 (2) ◽  
pp. 292-308 ◽  
Author(s):  
Rosi Crane ◽  
B. J. GILL

William Smyth, unable to get work in a New Zealand museum, ran a commercial taxidermy business at Caversham, Dunedin, from about 1873 to 1911 or 1912. His two decades of correspondence with Thomas Frederic Cheeseman at the Auckland Museum provide a case study of Smyth's professional interaction with one of New Zealand's main museums. We have used this and other sources to paint a picture of Smyth's activities and achievements during a time when there was great interest in New Zealand birds but few local taxidermists to preserve their bodies. Besides the Auckland Museum, Smyth supplied specimens to various people with museum connections, including Georg Thilenius (Germany) and Walter Lawry Buller (New Zealand). Smyth was probably self-taught, and his standards of preparation and labelling were variable, but he left a legacy for the historical documentation of New Zealand ornithology by the large number of his bird specimens that now reside in public museum collections in New Zealand and elsewhere.


2018 ◽  
Vol 115 (7) ◽  
pp. 1546-1551 ◽  
Author(s):  
Alexander P. Boast ◽  
Laura S. Weyrich ◽  
Jamie R. Wood ◽  
Jessica L. Metcalf ◽  
Rob Knight ◽  
...  

Over the past 50,000 y, biotic extinctions and declines have left a legacy of vacant niches and broken ecological interactions across global terrestrial ecosystems. Reconstructing the natural, unmodified ecosystems that preceded these events relies on high-resolution analyses of paleoecological deposits. Coprolites are a source of uniquely detailed information about trophic interactions and the behaviors, gut parasite communities, and microbiotas of prehistoric animal species. Such insights are critical for understanding the legacy effects of extinctions on ecosystems, and can help guide contemporary conservation and ecosystem restoration efforts. Here we use high-throughput sequencing (HTS) of ancient eukaryotic DNA from coprolites to reconstruct aspects of the biology and ecology of four species of extinct moa and the critically endangered kakapo parrot from New Zealand (NZ). Importantly, we provide evidence that moa and prehistoric kakapo consumed ectomycorrhizal fungi, suggesting these birds played a role in dispersing fungi that are key to NZ’s natural forest ecosystems. We also provide the first DNA-based evidence that moa frequently supplemented their broad diets with ferns and mosses. Finally, we also find parasite taxa that provide insight into moa behavior, and present data supporting the hypothesis of coextinction between moa and several parasite species. Our study demonstrates that HTS sequencing of coprolites provides a powerful tool for resolving key aspects of ancient ecosystems and may rapidly provide information not obtainable by conventional paleoecological techniques, such as fossil analyses.


Parasitology ◽  
2017 ◽  
Vol 144 (13) ◽  
pp. 1743-1751 ◽  
Author(s):  
D. C. SIJBRANDA ◽  
B. D. GARTRELL ◽  
Z. L. GRANGE ◽  
L. HOWE

SUMMARYAvian malaria, caused by Plasmodium spp., is an emerging disease in New Zealand (NZ). To detect Plasmodium spp. infection and quantify parasite load in NZ birds, a real-time polymerase chain reaction (PCR) (qPCR) protocol was used and compared with a nested PCR (nPCR) assay. A total of 202 blood samples from 14 bird species with known nPCR results were tested. The qPCR prevalences for introduced, native and endemic species groups were 70, 11 and 21%, respectively, with a sensitivity and specificity of 96·7 and 98%, respectively, for the qPCR, while a sensitivity and specificity of 80·9 and 85·4% were determined for the nPCR. The qPCR appeared to be more sensitive in detecting lower levels of parasitaemia. The mean parasite load was significantly higher in introduced bird species (2245 parasites per 10 000 erythrocytes) compared with endemic species (31·5 parasites per 10 000 erythrocytes). In NZ robins (Petroica longipes), a significantly lower packed cell volume was found in birds that were positive for Plasmodium spp. compared with birds that were negative. Our data suggest that introduced bird species, such as blackbirds (Turdus merula), have a higher tolerance for circulating parasite stages of Plasmodium spp., indicating that introduced species are an important reservoir of avian malaria due to a high infection prevalence and parasite load.


2015 ◽  
Vol 61 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Mailee Stanbury ◽  
James V. Briskie

Abstract Although it is well known that birds can assess predation risk through visual and auditory cues, there has been little research into whether similar processes occur with olfactory cues. We examined the role of odor cues in assessing nest predation risk in four species of passerine birds in New Zealand. We compared the ability of two introduced European species (common starling Sturnus vulgaris and song thrush Turdus philomelos) and two native New Zealand species (rifleman Acanthisitta chloris and South Island robin Petroica australis) to respond to the scent of rat urine placed in the nest. Rats are an introduced predator in New Zealand and we expected the native birds, which did not co-evolve with any mammalian predators, to lack behavioral adaptations to the scent of rats at their nest. As expected, both riflemen and robins failed to show any change in their behavior at their nest when rat urine was present compared to a control period in which no scent was present. However, a similar lack of response was observed in the introduced song thrush; only the common starling changed its behavior in the presence of the rat urine. Starlings with rat urine at the nest box were more likely to hesitate before entering and they also approached the nest, but refused to enter more often in the presence of rat scent. Both responses suggest they detected the presence of a predator and changed their behavior to minimize risk to themselves. Although based on a small number of species, our results suggest that responses to predator scent may be less common in New Zealand species, and may be a factor contributing to the vulnerability of native birds to introduced mammalian predators.


2014 ◽  
Vol 58 (1) ◽  
pp. 171-175 ◽  
Author(s):  
Laryssa Howe ◽  
Stuart Hunter ◽  
Elizabeth Burrows ◽  
Wendi Roe

Sign in / Sign up

Export Citation Format

Share Document