Sugar is an ant’s best friend? Testing food web theory predictions about trophic position and abundance in an invasive ant (Nylanderia fulva)

Author(s):  
MacKenzie K. Kjeldgaard ◽  
Gregory A. Sword ◽  
Micky D. Eubanks
2009 ◽  
Vol 364 (1524) ◽  
pp. 1789-1801 ◽  
Author(s):  
Kevin Shear McCann ◽  
Neil Rooney

Here, we synthesize a number of recent empirical and theoretical papers to argue that food-web dynamics are characterized by high amounts of spatial and temporal variability and that organisms respond predictably, via behaviour, to these changing conditions. Such behavioural responses on the landscape drive a highly adaptive food-web structure in space and time. Empirical evidence suggests that underlying attributes of food webs are potentially scale-invariant such that food webs are characterized by hump-shaped trophic structures with fast and slow pathways that repeat at different resolutions within the food web. We place these empirical patterns within the context of recent food-web theory to show that adaptable food-web structure confers stability to an assemblage of interacting organisms in a variable world. Finally, we show that recent food-web analyses agree with two of the major predictions of this theory. We argue that the next major frontier in food-web theory and applied food-web ecology must consider the influence of variability on food-web structure.


Ecology ◽  
2005 ◽  
Vol 86 (9) ◽  
pp. 2530-2535 ◽  
Author(s):  
Craig A. Layman ◽  
Kirk O. Winemiller ◽  
D. Albrey Arrington ◽  
David B. Jepsen
Keyword(s):  
Food Web ◽  

2013 ◽  
Vol 88 (3) ◽  
pp. 371-375 ◽  
Author(s):  
J. Navarro ◽  
M. Albo-Puigserver ◽  
M. Coll ◽  
R. Saez ◽  
M.G. Forero ◽  
...  

AbstractDuring the past decade, parasites have been considered important components of their ecosystems since they can modify food-web structures and functioning. One constraint to the inclusion of parasites in food-web models is the scarcity of available information on their feeding habits and host–parasite relationships. The stable isotope approach is suggested as a useful methodology to determine the trophic position and feeding habits of parasites. However, the isotopic approach is limited by the lack of information on the isotopic discrimination (ID) values of parasites, which is pivotal to avoiding the biased interpretation of isotopic results. In the present study we aimed to provide the first ID values of δ15N and δ13C between the gyrocotylidean tapeworm Gyrocotyle urna and its definitive host, the holocephalan Chimaera monstrosa. We also test the effect of host body size (body length and body mass) and sex of the host on the ID values. Finally, we illustrate how the trophic relationships of the fish host C. monstrosa and the tapeworm G. urna could vary relative to ID values. Similar to other studies with parasites, the ID values of the parasite–host system were negative for both isotopic values of N (Δδ15N = − 3.33 ± 0.63‰) and C (Δδ13C = − 1.32 ± 0.65‰), independent of the sex and size of the host. By comparing the specific ID obtained here with ID from other studies, we illustrate the importance of using specific ID in parasite–host systems to avoid potential errors in the interpretation of the results when surrogate values from similar systems or organisms are used.


Ecology ◽  
1988 ◽  
Vol 69 (6) ◽  
pp. 1665-1668 ◽  
Author(s):  
Alan Hastings
Keyword(s):  
Food Web ◽  

2002 ◽  
Vol 59 (9) ◽  
pp. 1563-1573 ◽  
Author(s):  
Olivier Dangles

Functional plasticity of benthic macroinvertebrates was investigated over one year in four acid streams in the Vosges Mountains (northeastern France). The trophic position of macroinvertebrate species within the benthic food web was determined using gut content analyses. Diet analyses revealed that only 24–36% of biomass of putative shredders consumed leaf fragments, whereas up to 44% consumed benthic algae and bryophytes. Although most Nemouromorpha stoneflies were generalist consumers, several other taxa (e.g., Brachyptera seticornis, Chaetopterygopsis maclachlani) specialised on benthic algae and bryophytes. Our study showed that acid streams unexpectedly had very few specialised leaf-shredding species (e.g., Chaetopteryx villosa) that could explain the slow leaf detritus processing rates observed in these systems. Primary producers appear to be an alternative resource for shredders, playing an important role in supporting food webs in forested acid streams. The food web built in this study suggests that overlooking species-specific functional plasticity of invertebrates may result in a misconception of invertebrate community structure in acid streams.


2019 ◽  
Author(s):  
Michaela Hamm ◽  
Barbara Drossel

ABSTRACTEcological systems show a variety of characteristic patterns of biodiversity in space and time. It is a challenge for theory to find models that can reproduce and explain the observed patterns. Since the advent of island biogeography these models revolve around speciation, dispersal, and extinction, but they usually neglect trophic structure. Here, we propose and study a spatially extended evolutionary food web model that allows us to study large spatial systems with several trophic layers. Our computer simulations show that the model gives rise simultaneously to several biodiversity patterns in space and time, from species abundance distributions to the waxing and waning of geographic ranges. We find that trophic position in the network plays a crucial role when it comes to the time evolution of range sizes, because the trophic context restricts the occurrence and survival of species especially on higher trophic levels.


Sign in / Sign up

Export Citation Format

Share Document