Isotopic discrimination of stable isotopes of nitrogen (δ15N) and carbon (δ13C) in a host-specific holocephalan tapeworm

2013 ◽  
Vol 88 (3) ◽  
pp. 371-375 ◽  
Author(s):  
J. Navarro ◽  
M. Albo-Puigserver ◽  
M. Coll ◽  
R. Saez ◽  
M.G. Forero ◽  
...  

AbstractDuring the past decade, parasites have been considered important components of their ecosystems since they can modify food-web structures and functioning. One constraint to the inclusion of parasites in food-web models is the scarcity of available information on their feeding habits and host–parasite relationships. The stable isotope approach is suggested as a useful methodology to determine the trophic position and feeding habits of parasites. However, the isotopic approach is limited by the lack of information on the isotopic discrimination (ID) values of parasites, which is pivotal to avoiding the biased interpretation of isotopic results. In the present study we aimed to provide the first ID values of δ15N and δ13C between the gyrocotylidean tapeworm Gyrocotyle urna and its definitive host, the holocephalan Chimaera monstrosa. We also test the effect of host body size (body length and body mass) and sex of the host on the ID values. Finally, we illustrate how the trophic relationships of the fish host C. monstrosa and the tapeworm G. urna could vary relative to ID values. Similar to other studies with parasites, the ID values of the parasite–host system were negative for both isotopic values of N (Δδ15N = − 3.33 ± 0.63‰) and C (Δδ13C = − 1.32 ± 0.65‰), independent of the sex and size of the host. By comparing the specific ID obtained here with ID from other studies, we illustrate the importance of using specific ID in parasite–host systems to avoid potential errors in the interpretation of the results when surrogate values from similar systems or organisms are used.

2000 ◽  
Vol 57 (7) ◽  
pp. 1395-1403 ◽  
Author(s):  
Chris J Harvey ◽  
James F Kitchell

We used stable isotope analysis to derive trophic relationships and movement patterns for components of the western Lake Superior food web. Trophic linkages implied by previous gut content studies were only marginally supported by stable isotope data. Siscowet lake trout (Salvelinus namaycush siscowet) were the top predators, and trophic overlap between siscowet and lean lake trout (Salvelinus namaycush) was low. Exotic Pacific salmon (Oncorhynchus spp.) occupied a lower trophic position than native piscivores because the latter relied more on coregonids. To evaluate spatial heterogeneity of the food web, we assumed that the adjacent cities of Duluth and Superior (DS) were a point source of 15N, and we measured isotopes of organisms close to and far from DS. Slimy sculpin (Cottus cognatus) were enriched in the DS area relative to other sites, implying that they are relatively sedentary. Rainbow smelt (Osmerus mordax) showed no differences at any sites, implying high vagility. Other organisms showed differences that could not be attributed to DS, implying that other mechanisms, such as trophic ontogeny, were influencing their isotopic signatures.


Oecologia ◽  
2020 ◽  
Vol 194 (4) ◽  
pp. 541-554
Author(s):  
Virginia Sánchez Barranco ◽  
Marcel T. J. Van der Meer ◽  
Maiko Kagami ◽  
Silke Van den Wyngaert ◽  
Dedmer B. Van de Waal ◽  
...  

AbstractParasitism is arguably the most commonly occurring consumer strategy. However, only a few food web studies assess how well stable isotopes reflect the trophic position of parasitic consumers and results are variable. Even fewer studies have measured the nutrient transfer by parasitic consumers, hindering an assessment of their role in nutrient transfer through food webs. Here we used a food chain consisting of a diatom as host, a chytrid as its parasitic consumer and a rotifer as the predatory consumer of the chytrid, to assess the trophic position of all three food-chain components using their natural 13C and 15N isotope signatures, and to measure the nitrogen transfer from the host via the chytrid to the rotifer by tracing 15N of a labelled host up the food chain. Additionally, we measured the carbon to nitrogen (C:N) ratios of all food-chain components. Natural isotope abundance results showed no clear 15N enrichment in the chytrid or rotifer relative to the primary producer. However, estimates of nitrogen transfer indicated that about 14% of host nitrogen was transferred per day from host to chytrid during infection epidemics and that some of this nitrogen was also transferred onward to the rotifer. Moreover, C:N ratios decreased with trophic level, suggesting that the chytrid provided a high-quality food source to the rotifer. In conclusion, our results support the “mycoloop”. The mycooloop proposes that chytrid infections allow the transfer of nutrients bound in large, inedible phytoplankton to zooplankton through the production of edible transmission spores, thereby rerouting nutrients back into the food web.


2006 ◽  
Vol 86 (6) ◽  
pp. 1443-1447 ◽  
Author(s):  
D. Fourgon ◽  
G. Lepoint ◽  
I. Eeckhaut

Analyses of the natural abundance of carbon and nitrogen stable isotopes were performed to investigate the feeding habits of two ophiuroids, Ophiomastix venosa and Ophiocoma scolopendrina, and to assess the potential benefit obtained by the symbiotic Ophiomastix venosa juveniles. A tracer experiment was also carried out to clarify the contribution of algae to the nitrogen uptake amongst the tested ophiuroids. Our results suggest that Ophiocoma scolopendrina adults occupy a higher position in the food web than Ophiomastix venosa and mainly feed on neuston. In contrast, O. venosa adults feed on the alga Sargassum densifolium and on organic matter associated with sediment. Free juveniles and symbiotic juveniles of O. venosa have intermediate δ13C values between both adult species. The high proportion of 13C in the symbiotic juveniles compared to the one in their conspecific adults indicates that their diet slightly differs from the latter and is closer to that of Ophiocoma scolopendrina. This raises the hypothesis that symbiotic juveniles steal neuston from their associated host, O. scolopendrina.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4005 ◽  
Author(s):  
Angelats Lobo ◽  
Ginestra

The classic cell culture involves the use of support in two dimensions, such as a well plate or a Petri dish, that allows the culture of different types of cells. However, this technique does not mimic the natural microenvironment where the cells are exposed to. To solve that, three-dimensional bioprinting techniques were implemented, which involves the use of biopolymers and/or synthetic materials and cells. Because of a lack of information between data sources, the objective of this review paper is, to sum up, all the available information on the topic of bioprinting and to help researchers with the problematics with 3D bioprinters, such as the 3D-Bioplotter™. The 3D-Bioplotter™ has been used in the pre-clinical field since 2000 and could allow the printing of more than one material at the same time, and therefore to increase the complexity of the 3D structure manufactured. It is also very precise with maximum flexibility and a user-friendly and stable software that allows the optimization of the bioprinting process on the technological point of view. Different applications have resulted from the research on this field, mainly focused on regenerative medicine, but the lack of information and/or the possible misunderstandings between papers makes the reproducibility of the tests difficult. Nowadays, the 3D Bioprinting is evolving into another technology called 4D Bioprinting, which promises to be the next step in the bioprinting field and might promote great applications in the future.


2003 ◽  
Vol 60 (5) ◽  
pp. 939-950 ◽  
Author(s):  
Chris J Harvey ◽  
Sean P Cox ◽  
Timothy E Essington ◽  
Sture Hansson ◽  
James F Kitchell

Abstract Because fisheries operate within a complex array of species interactions, scientists increasingly recommend multispecies approaches to fisheries management. We created a food web model for the Baltic Sea proper, using the Ecopath with Ecosim software, to evaluate interactions between fisheries and the food web from 1974 to 2000. The model was based largely on values generated by multispecies virtual population analysis (MSVPA). Ecosim outputs closely reproduced MSVPA biomass estimates and catch data for sprat (Sprattus sprattus), herring (Clupea harengus), and cod (Gadus morhua), but only after making adjustments to cod recruitment, to vulnerability to predation of specific species, and to foraging times. Among the necessary adjustments were divergent trophic relationships between cod and clupeids: cod exhibited top-down control on sprat biomass, but had little influence on herring. Fishing, the chief source of mortality for cod and herring, and cod reproduction, as driven by oceanographic conditions as well as unexplained variability, were also key structuring forces. The model generated many hypotheses about relationships between key biota in the Baltic Sea food web and may ultimately provide a basis for estimating community responses to management actions.


Sign in / Sign up

Export Citation Format

Share Document