scholarly journals Correction to: Early detection monitoring for non-indigenous fishes; comparison of survey approaches during two species introductions in a Great Lakes port

Author(s):  
Greg S. Peterson ◽  
Joel C. Hoffman ◽  
Anett S. Trebitz ◽  
Chelsea I. Hatzenbuhler ◽  
Jared T. Myers ◽  
...  
2001 ◽  
Vol 58 (12) ◽  
pp. 2513-2525 ◽  
Author(s):  
Anthony Ricciardi

A widely cited hypothesis in ecology is that species-rich communities are less vulnerable to invasion than species-poor ones, owing to competition for limiting resources (the "biotic resistance" model). However, evidence for biotic resistance in aquatic ecosystems is equivocal. Contrary to the view that communities become more resistant to invasion as they accumulate species, the rate of invasion has increased over the past century in areas that have received frequent shipping traffic. Furthermore, introduced species may facilitate, rather than compete with, one another. A review of invasions in the Great Lakes indicates that direct positive (mutualistic and commensal) interactions among introduced species are more common than purely negative (competitive and amensal) interactions. In addition, many exploitative (e.g., predator–prey) interactions appear to be strongly asymmetric in benefiting one invading species at a negligible cost to another. These observations, combined with an increasing invasion rate in the Great Lakes, tentatively support the Simberloff – Von Holle "invasional meltdown" model. The model posits that ecosystems become more easily invaded as the cumulative number of species introductions increases, and that facilitative interactions can exacerbate the impact of invaders. It provides a theoretical argument for substantially reducing the rate of species introductions to the Great Lakes.


2010 ◽  
Vol 36 (1) ◽  
pp. 199-205 ◽  
Author(s):  
M. Jake Vander Zanden ◽  
Gretchen J.A. Hansen ◽  
Scott N. Higgins ◽  
Matthew S. Kornis

Fisheries ◽  
2015 ◽  
Vol 41 (1) ◽  
pp. 26-37 ◽  
Author(s):  
Joel C. Hoffman ◽  
Joshua Schloesser ◽  
Anett S. Trebitz ◽  
Greg S. Peterson ◽  
Michelle Gutsch ◽  
...  

2010 ◽  
Vol 67 (2) ◽  
pp. 417-426 ◽  
Author(s):  
Derek K. Gray ◽  
Hugh J. MacIsaac

To reduce the transfer of nonindigenous species, regulations require transoceanic ships to exchange ballast with ocean water before discharging into the Great Lakes. Although ballast water exchange (BWE) is effective for live freshwater animals, laboratory experiments provide mixed results with regards to its impact on diapausing zooplankton eggs. We conducted an in situ test of the effectiveness of BWE for treating diapausing eggs in ballast sediments. Incubation chambers containing ballast sediment were placed in ballast tanks of cargo vessels transiting from North America to Europe. Each vessel had paired ballast tanks, one of which remained filled with Great Lakes water (control), while the second was exchanged with mid-ocean water. Laboratory viability tests were then conducted to compare viability of eggs recovered from sediments placed in both treatments, as well as identical sediments that remained at the laboratory in cold storage. No significant differences in egg viability were detected between treatments, but more species hatched from sediment that remained in cold storage. Results indicate that physical conditions in ballast tanks may affect egg viability, but saltwater exposure does not eliminate the risk of species introductions via diapausing eggs. Strategies that minimize sediment accumulation in ballast tanks can reduce the risk of species introductions via diapausing eggs.


2007 ◽  
Vol 64 (3) ◽  
pp. 530-538 ◽  
Author(s):  
John M Drake ◽  
David M Lodge

We report results from a study of species in ballast tanks of ships entering the Great Lakes between 2000 and 2002. We collected 1349 individuals from at least 93 unique taxonomic groups, of which approximately half were identified to species. We estimated that the zooplankton assemblage in ballast water destined for the Great Lakes comprised from 200 to 1000 unique taxa consisting of both freshwater and marine species. Between 14 and 39 of these taxa have not yet been recorded from the Great Lakes. Further, 13.9% of individual specimens identified to the species level were from species not previously collected from the Great Lakes. We collected seven nonindigenous freshwater species not currently found in the Great Lakes: Brachionus plicatilis, Cyclocypria kinkaidia, Maraenobiotus insignipes, Microcyclops rubellus, Microcyclops varicans, Neomysis awatchensis, and Paracyclops chiltoni. We found no evidence that ship age, seasonal timing, or age of ballast water affected the abundance of individuals or species in the ballast tanks. To our knowledge, these are the first extrapolations of data from ballast water collections to estimate the rate of species introduction to any ecosystem.


Sign in / Sign up

Export Citation Format

Share Document