facilitative interactions
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 24)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Garth Fabbro

<p>Competitive and facilitative interactions play an important role in determining plant community structure and development. Historically, competitive interactions have been considered to be more prevalent in nature. However, in the past few decades strong facilitative interactions have been identified as being more important than competition in certain environments. Recent evidence has also suggested that interactions occurring in the above and below ground environments may be unevenly contributing to the net interaction effects between a target plant and nurses species. This study partitions the above and below ground interactions and determines their strength and directions in order to help better understand their relative importance to plant community dynamics.  In Chapter 2 I develop species specific allometric models which aim to accurately estimate the total above- and below- ground biomass of individual D. dacrydioides and P. totara juveniles using measurements which are easily and non-destructively obtained in the field. The best model for each species is then used to construct total above and below ground biomass estimates for use in Chapter 3. Eight models using stem height, diameter, and volume either alone or in combination are examined for their predictive power and tested for their goodness of fit. Models using diameter alone are found to be less powerful in predicting total tree biomass, while models containing height either alone or in combination with diameter are more powerful. The absolute best model for predicting D. dacrydioides total biomass was BTOTAL = 0.0099(Height²)⁰˙⁸⁷⁴⁹, whereas the absolute best model for P. totara was BTOTAL = 0.2635((Height*Diameter)²)⁰˙⁵⁶⁹⁵.  In Chapter 3 I use the Relative Interaction Index (RII) to determine the strength and direction of the net interactions affecting D. dacrydioides and P. totara juveniles. To partition the above ground interactions, I examined the effects of a conspecific or interspecific neighbour. I found that my two study species D. dacrydioides and P. totara showed different responses to the treatments that they received. D. dacrydioides showed net facilitation and gained biomass when it had access to the mycorrhizal network and a neighbour. Whereas, P. totara showed net neutral interactions and did not gain biomass. P. totara also showed net competition when it did not have access to the mycorrhizal network and was grown next to neighbours. The role of above ground interactions was found to be less important than below ground interactions, overall. In general, these results mean that D. dacrydioides juveniles should be expected to have higher growth, reproductive, and survival rates when grown next to nurse species in comparison to P. totara.  Chapter 4 details the significance of this study for the restoration of Wairio wetland, and wetlands in general. Given the result in chapter 3 and the current restoration method at Wairio wetland, this study suggests that it may be worth exploring the benefit of planting new P. totara juveniles farther away from older woody species in order to avoid root competition.</p>


2021 ◽  
Author(s):  
◽  
Garth Fabbro

<p>Competitive and facilitative interactions play an important role in determining plant community structure and development. Historically, competitive interactions have been considered to be more prevalent in nature. However, in the past few decades strong facilitative interactions have been identified as being more important than competition in certain environments. Recent evidence has also suggested that interactions occurring in the above and below ground environments may be unevenly contributing to the net interaction effects between a target plant and nurses species. This study partitions the above and below ground interactions and determines their strength and directions in order to help better understand their relative importance to plant community dynamics.  In Chapter 2 I develop species specific allometric models which aim to accurately estimate the total above- and below- ground biomass of individual D. dacrydioides and P. totara juveniles using measurements which are easily and non-destructively obtained in the field. The best model for each species is then used to construct total above and below ground biomass estimates for use in Chapter 3. Eight models using stem height, diameter, and volume either alone or in combination are examined for their predictive power and tested for their goodness of fit. Models using diameter alone are found to be less powerful in predicting total tree biomass, while models containing height either alone or in combination with diameter are more powerful. The absolute best model for predicting D. dacrydioides total biomass was BTOTAL = 0.0099(Height²)⁰˙⁸⁷⁴⁹, whereas the absolute best model for P. totara was BTOTAL = 0.2635((Height*Diameter)²)⁰˙⁵⁶⁹⁵.  In Chapter 3 I use the Relative Interaction Index (RII) to determine the strength and direction of the net interactions affecting D. dacrydioides and P. totara juveniles. To partition the above ground interactions, I examined the effects of a conspecific or interspecific neighbour. I found that my two study species D. dacrydioides and P. totara showed different responses to the treatments that they received. D. dacrydioides showed net facilitation and gained biomass when it had access to the mycorrhizal network and a neighbour. Whereas, P. totara showed net neutral interactions and did not gain biomass. P. totara also showed net competition when it did not have access to the mycorrhizal network and was grown next to neighbours. The role of above ground interactions was found to be less important than below ground interactions, overall. In general, these results mean that D. dacrydioides juveniles should be expected to have higher growth, reproductive, and survival rates when grown next to nurse species in comparison to P. totara.  Chapter 4 details the significance of this study for the restoration of Wairio wetland, and wetlands in general. Given the result in chapter 3 and the current restoration method at Wairio wetland, this study suggests that it may be worth exploring the benefit of planting new P. totara juveniles farther away from older woody species in order to avoid root competition.</p>


2021 ◽  
Author(s):  
Ryan Amir Beshai ◽  
Danny Truong ◽  
Amy Henry ◽  
Cascade Sorte

Abstract High community diversity may either prevent or promote the establishment of exotic species. The biotic resistance hypothesis holds that species-rich communities are more resistant to invasion than species-poor communities due to greater interspecific competition. Conversely, the invasional meltdown hypothesis proposes that greater exotic diversity increases invasibility via facilitative interactions between exotic species. To evaluate the degree to which biotic resistance or invasional meltdown influences marine community structure during the assembly period, we studied the development of marine epibenthic “fouling” communities at two southern California harbors. We found that fewer exotic species established as total and exotic richness increased during community assembly and that this effect remained after accounting for space availability. We also found that changes in exotic abundance decreased over time. Throughout the assembly period, gains in exotic abundance were greatest when space was abundant and richness was low. Altogether, we found greater support for biotic resistance than invasional meltdown, suggesting that both native and exotic species contribute to biotic resistance during early community development. However, this resistance may not reduce the total dominance of exotic species.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1650
Author(s):  
Herman A. Verhoef

Whether decomposition can be affected by the biodiversity of soil organisms is an important question. Biodiversity is commonly expressed through indices that are based on species richness and abundances. Soil processes tend to saturate at low levels of species richness. A component of biodiversity is functional diversity, and we have shown that the absence of the influence of species richness on decomposition switched into a positive relationship between fauna diversity and decomposition when we expressed biodiversity in terms of interspecific functional dissimilarity. Communities with functionally dissimilar species are characterized by complementary resource use and facilitative interactions among species. It is suggested that the effects of environmental changes on ecosystem functions such as decomposition can be better understood if we have more knowledge about the selective effect of these changes on specific facets of soil biodiversity, such as functional diversity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sabrina S. Gavini ◽  
Agustín Sáez ◽  
Cristina Tur ◽  
Marcelo A. Aizen

AbstractPollinator-mediated plant–plant interactions have traditionally been viewed within the competition paradigm. However, facilitation via pollinator sharing might be the rule rather than the exception in harsh environments. Moreover, plant diversity could be playing a key role in fostering pollinator-mediated facilitation. Yet, the facilitative effect of plant diversity on pollination remains poorly understood, especially under natural conditions. By examining a total of 9371 stigmas of 88 species from nine high-Andean communities in NW Patagonia, we explored the prevalent sign of the relation between conspecific pollen receipt and heterospecific pollen diversity, and assessed whether the incidence of different outcomes varies with altitude and whether pollen receipt relates to plant diversity. Conspecific pollen receipt increased with heterospecific pollen diversity on stigmas. In all communities, species showed either positive or neutral but never negative relations between the number of heterospecific pollen donor species and conspecific pollen receipt. The incidence of species showing positive relations increased with altitude. Finally, stigmas collected from communities with more co-flowering species had richer heterospecific pollen loads and higher abundance of conspecific pollen grains. Our findings suggest that plant diversity enhances pollination success in high-Andean plant communities. This study emphasizes the importance of plant diversity in fostering indirect plant–plant facilitative interactions in alpine environments, which could promote species coexistence and biodiversity maintenance.


2021 ◽  
Author(s):  
María Alisa Alvarez ◽  
Ana Agustina Barros ◽  
Diego Pedro Vázquez ◽  
Lorena de Jesús Bonjour ◽  
Jonas Lembrechts ◽  
...  

Abstract Hikers and livestock using mountain trails damage native vegetation and act as seed vectors, thus favouring the spread of non-native plants. We evaluated the effect of trails and livestock abundance on the success of non-native plants in the arid central Andes of Argentina. We surveyed six trails, covering elevations between 2400 m and 3570 m a.s.l. and recorded non-native and native vegetation using transects distributed along the elevational gradient and spanning distances up to 22 m from the trail. We assessed how non-native occurrence, richness and cover varied with distance from the trail, intensity of use by livestock, native plant community composition and elevation. We found that trails favoured non-native occurrence, but did not influence richness and cover, while livestock favoured non-native occurrence, richness and cover. Non-native richness and cover decreased with elevation and varied with native community composition. In addition, non-native richness was positively correlated with native shrub cover suggesting possible facilitative interactions. Our results show that despite strong environmental filtering that decreases non-native abundance with elevation, non-natives occur up to the upper limits of vegetation, and that trails and livestock favour their spread in the mountains.


2021 ◽  
Author(s):  
Stephanie Archer ◽  
Philina English ◽  
Finella Campanino ◽  
Craig Layman

Seagrass beds are important coastal ecosystems worldwide that are shaped by facilitative interactions. Recent theoretical work has emphasized the potential for facilitative interactions involving foundation species to be destabilized in the face of anthropogenic change. Consequently, it is important to identify which taxa facilitate seagrasses. In other ecosystems, sponges contribute to the maintenance of diverse and productive systems through their facilitation of foundation species (e.g., mangroves) and the retention and recycling of energy and nutrients. Sponges are common in tropical and subtropical seagrass beds, yet we know little about how their presence impacts these communities. Here, we examine the impact of the sponge Ircinia felix on primary producers in a Thalassia testudinum dominated seagrass bed using a long-term field experiment in The Bahamas. We transplanted live sponges into the center of 5 m x 5 m plots and monitored the response of seagrasses and macroalgae. Sponge presence increased seagrass nutrient content and growth, as well as the abundance of macroalgae and non-dominant seagrass species (Syringodium filiforme and Halodule wrightii). These changes were not seen in the control (unmanipulated) or structure (where we placed a polypropylene sponge replica) plots. We conclude that I. felix facilitates seagrass bed primary producers in oligotrophic systems, likely due to nutrients supplied by the sponge. Our study shows that sponges can have a positive influence on seagrass bed foundation species. Further work is needed to understand how this facilitation impacts the stability of seagrass beds in areas where human activities have increased ambient nutrient levels.


2021 ◽  
Author(s):  
Karine Gagnon ◽  
Hartvig Christie ◽  
Karin Didderen ◽  
Camilla W. Fagerli ◽  
Laura L. Govers ◽  
...  

2021 ◽  
Vol 52 (2) ◽  
pp. 239-250
Author(s):  
J.B. Shi ◽  
X.Y. Gong ◽  
M. Khashi u Rahman ◽  
T. Yua ◽  
X.G. Zhou ◽  
...  

Facilitative interactions occur between the plants in intercropping systems, however, the underlying allelopathy mechanisms are poorly understood. We determined the effects of potato-onion (Allium cepa var. agrogatum Don.) intercrop on root morphology of tomato (Lycopersicon esculenum L.) through volatile organic compounds (VOCs). There were four treatments as (i) Tomato/tomato without VOCs interaction (-TT), (ii) Tomato/tomato with VOCs interaction (+TT, control), (iii) Potato-onion/tomato without VOCs interaction (-OT) and (iv) Potato-onion/tomato with VOCs interaction +(OT) in glasshouses. As compared to tomato, VOCs from potato-onion significantly increased the number of root tips total length but decreased the root diameter of tomato, however significantly the increase the tomato root length (0-0.5 mm mean diameter). These results indicated that the tomato root morphology has influenced by aboveground secreted VOCs from neighboring plants in potato-onion intercropping system.


Sign in / Sign up

Export Citation Format

Share Document