scholarly journals Extinction risk and conservation gaps for Aloe (Asphodelaceae) in the Horn of Africa

2019 ◽  
Vol 29 (1) ◽  
pp. 77-98
Author(s):  
Steven P. Bachman ◽  
Paul Wilkin ◽  
Tom Reader ◽  
Richard Field ◽  
Odile Weber ◽  
...  

Abstract Identification of conservation priorities is essential for conservation planning, especially as the biodiversity crisis develops. We aimed to support conservation prioritisation by addressing knowledge gaps for the genus Aloe in the Horn of Africa. Specifically, we developed a dataset of herbarium voucher specimens and occurrence data to estimate geographic distribution of 88 species of Aloe and used this to estimate extinction risk and establish the major threats to Aloe in this region. The resulting assessments, each published on the IUCN Red List, show that 39% of the species are threatened with extinction, and the principal threats are the expansion and intensification of crop farming and livestock farming, gathering of plants, and unintentional effects of logging and wood harvesting. We review ex situ conservation in botanic gardens and seed banks, revealing gaps in coverage and urgent priorities for collection, with 25 threatened Aloe species currently unrepresented in seed banks. Protected areas in the region offer limited coverage of Aloe distributions and the most recently designated protected areas are increasingly in regions that do not overlap with Aloe distributions. However, we show with a simple optimisation approach that even a modest increase in protected area of 824 square kilometres would allow representation of all Aloe species, although further data are needed to test the area required to ensure long-term persistence (resilience) of Aloe species.

2017 ◽  
Author(s):  
Rikki Gumbs ◽  
Claudia L. Gray ◽  
Oliver R. Wearn ◽  
Nisha R. Owen

AbstractThe scale of the ongoing biodiversity crisis requires both effective conservation prioritisation and urgent action. The EDGE metric, which prioritises species based on their Evolutionary Distinctiveness (ED) and Global Endangerment (GE), relies on adequate phylogenetic and extinction risk data to generate meaningful priorities for conservation. However, comprehensive phylogenetic analyses of large clades are extremely rare and, even when available, become quickly out-of-date due to the rapid rate of species descriptions and taxonomic revisions. Thus, it is important that conservationists can use the available data to incorporate evolutionary history into conservation prioritisation. We compared published and new methods to impute ED for species missing from a phylogeny whilst simultaneously correcting the ED scores of their close taxonomic relatives. We found that following artificial removal of species from a phylogeny, the new method provided the closest estimates of their “true” score, differing from the true ED score by an average of less than 1%, compared to the 31% and 38% difference of the previous imputation methods. Previous methods also substantially under- and over-estimated scores as more species were artificially removed from a phylogeny. We therefore used the new method to estimate ED scores for all tetrapods. From these scores we updated EDGE prioritisation rankings for all tetrapod species with IUCN Red List assessments, including the first EDGE prioritisation for reptiles. Further, we identified criteria to identify robust priority species in an effort to further inform conservation action whilst limiting uncertainty and anticipating future phylogenetic advances.


2021 ◽  
Vol 8 ◽  
Author(s):  
Elin A. Thomas ◽  
Aoife Molloy ◽  
Nova B. Hanson ◽  
Monika Böhm ◽  
Mary Seddon ◽  
...  

With the accelerating development of direct and indirect anthropogenic threats, including climate change and pollution as well as extractive industries such as deep-sea mining, there is an urgent need for simple but effective solutions to identify conservation priorities for deep-sea species. The International Union for Conservation of Nature (IUCN) Red List of Threatened Species is an effective and well-recognized tool to promote the protection of species and presents an opportunity to communicate conservation threats to industry, policy makers, and the general public. Here, we present the Vent Red List for molluscs: a complete global assessment of the extinction risk of all described molluscs endemic to hydrothermal vents, a habitat under imminent threat from deep-sea mining. Of the 184 species assessed, 62% are listed as threatened: 39 are Critically Endangered, 32 are Endangered, and 43 are Vulnerable. In contrast, the 25 species that are fully protected from deep-sea mining by local conservation measures are assessed as Least Concern, and a further 45 species are listed as Near Threatened, where some subpopulations face mining threats while others lie within protected areas. We further examined the risk to faunas at specific vent sites and biogeographic regions using a relative threat index, which highlights the imperiled status of vent fields in the Indian Ocean while other vent sites within established marine protected areas have a high proportion of species assessed as Least Concern. The Vent Red List exemplifies how taxonomy-driven tools can be utilized to support deep-sea conservation and provides a precedent for the application of Red List assessment criteria to diverse taxa from deep-sea habitats.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Beth A. Polidoro ◽  
Cristiane T. Elfes ◽  
Jonnell C. Sanciangco ◽  
Helen Pippard ◽  
Kent E. Carpenter

Given the economic and cultural dependence on the marine environment in Oceania and a rapidly expanding human population, many marine species populations are in decline and may be vulnerable to extinction from a number of local and regional threats. IUCN Red List assessments, a widely used system for quantifying threats to species and assessing species extinction risk, have been completed for 1190 marine species in Oceania to date, including all known species of corals, mangroves, seagrasses, sea snakes, marine mammals, sea birds, sea turtles, sharks, and rays present in Oceania, plus all species in five important perciform fish groups. Many of the species in these groups are threatened by the modification or destruction of coastal habitats, overfishing from direct or indirect exploitation, pollution, and other ecological or environmental changes associated with climate change. Spatial analyses of threatened species highlight priority areas for both site- and species-specific conservation action. Although increased knowledge and use of newly available IUCN Red List assessments for marine species can greatly improve conservation priorities for marine species in Oceania, many important fish groups are still in urgent need of assessment.


2015 ◽  
Vol 1 (10) ◽  
pp. e1500936 ◽  
Author(s):  
Hans ter Steege ◽  
Nigel C. A. Pitman ◽  
Timothy J. Killeen ◽  
William F. Laurance ◽  
Carlos A. Peres ◽  
...  

Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century.


2019 ◽  
Vol 5 (11) ◽  
pp. eaax9444 ◽  
Author(s):  
T. Stévart ◽  
G. Dauby ◽  
P. P. Lowry ◽  
A. Blach-Overgaard ◽  
V. Droissart ◽  
...  

Preserving tropical biodiversity is an urgent challenge when faced with the growing needs of countries. Despite their crucial importance for terrestrial ecosystems, most tropical plant species lack extinction risk assessments, limiting our ability to identify conservation priorities. Using a novel approach aligned with IUCN Red List criteria, we conducted a continental-scale preliminary conservation assessment of 22,036 vascular plant species in tropical Africa. Our results underline the high level of extinction risk of the tropical African flora. Thirty-three percent of the species are potentially threatened with extinction, and another third of species are likely rare, potentially becoming threatened in the near future. Four regions are highlighted with a high proportion (>40%) of potentially threatened species: Ethiopia, West Africa, central Tanzania, and southern Democratic Republic of the Congo. Our approach represents a first step toward data-driven conservation assessments applicable at continental scales providing crucial information for sustainable economic development prioritization.


Nature Plants ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 122-123 ◽  
Author(s):  
Sarah E. Dalrymple ◽  
Thomas Abeli
Keyword(s):  
Red List ◽  

2020 ◽  
Author(s):  
Michael O Levin ◽  
Jared B Meek ◽  
Brian Boom ◽  
Sara M Kross ◽  
Evan A Eskew

The IUCN Red List plays a key role in setting global conservation priorities. Species are added to the Red List through a rigorous assessment process that, while robust, can be quite time-intensive. Here, we test the rapid preliminary assessment of plant species extinction risk using a single Red List metric: Extent of Occurrence (EOO). To do so, we developed REBA (Rapid EOO-Based Assessment), a workflow that harvests and cleans data from the Global Biodiversity Information Facility (GBIF), calculates each species' EOO, and assigns Red List categories based on that metric. We validated REBA results against 1,546 North American plant species already on the Red List and found ~90% overlap between REBA's rapid classifications and those of full IUCN assessments. Our preliminary workflow can be used to quickly evaluate data deficient Red List species or those in need of reassessment, and can prioritize unevaluated species for a full assessment.


2021 ◽  
Vol 2 (5) ◽  
pp. 34-47
Author(s):  
Karim Omar ◽  
Ibrahim Elgamal

The process of developing a conservation programme for endemic plant species, in particular those with a small geographical size in mountain ecosystems, whether in situ of ex situ, is a very complex matter, especially if data on the state of the environment and conservation are unavailable. Silene leucophylla and Silene oreosinaica are perennial plants endemic to St. Catherine Protected Area (SCPA), which locate at South Sinai, Egypt. For long time, the second species has not been observed in the field. As a result, the purpose of this study was to increase understanding of the two species' ecological and conservation statuses by: The first step is to confirm their existence on the ground; the second step is to determine the present ecological and conservation conditions through an extinction risk assessment by using IUCN Red List methodology; and the third step is the use of Species Distribution Model (SDM) to locate and extract current appropriate habitat suitability. The field research, which was conducted between March to December 2017, resulted in building knowledge of the current distribution, characteristics of current species populations, and status of ecology and habitat, in addition to identifying the main threats. Both species have been recorded in 20 major sites, in a very restricted area, particularly in a high mountain region (19 sites of Silene leucophylla and 3 sites of S. oreosinaica), with Extent of Occurrence about 468.2 km2 for Silene leucophylla and 24.5 km2 for S. oreosinaica. The population size was very small and fragmented and the extreme drought and overgrazing clearly affected both species. Based on the collected data, the extinction risk was calculated as Critically Endangered for S. oreosinaica and as Endangered for S. leucophylla according to IUCN Red List. For both species, appropriate habitat is concentrated in the high mountain ranges in the central north section of the SCPA, according to SDM. For Silene leucophylla, a presence probability of 20.5 km2 was anticipated, whereas for S. oreosinaica, a presence probability of 62.1 km2 had been predicted. Conservation methods are advocated both in situ (via recovery) and ex situ (by seed collecting and storage, awareness building, and grazing control).


2019 ◽  
Author(s):  
Sarah Mogg ◽  
Constance Fastre ◽  
Martin Jung ◽  
Piero Visconti

ABSTRACTOver a quarter of species assessed by the IUCN Red List are threatened with extinction. A global commitment to protect 17% of land and 10% of the oceans by 2020 is close to being achieved, but with limited ecological impacts due to its inadequacy and poor enforcement. Here, we reverse-engineer IUCN Red List criteria to generate area-based conservation targets and spatial conservation priorities to minimize the extinction risk of the world terrestrial mammals. We find that approximately 60% of the Earth’s non-Antarctic land surface would require some form of protection. Our results suggest that global conservation priority schemes, among which the Aichi targets, will be inadequate to secure the persistence of terrestrial mammals. To achieve this goal, international cooperation is required to implement a connected and comprehensive conservation area network, guided by high priority regions outlined in this study.


Nature Plants ◽  
2019 ◽  
Vol 5 (9) ◽  
pp. 1022-1022
Author(s):  
Sarah E. Dalrymple ◽  
Thomas Abeli
Keyword(s):  
Red List ◽  

Sign in / Sign up

Export Citation Format

Share Document