scholarly journals Gap analyses of priority wild relatives of food crop in current ex situ and in situ conservation in Indonesia

Author(s):  
Wiguna Rahman ◽  
Joana Magos Brehm ◽  
Nigel Maxted ◽  
Jade Phillips ◽  
Aremi R. Contreras-Toledo ◽  
...  

AbstractConservation programmes are always limited by available resources. Careful planning is therefore required to increase the efficiency of conservation and gap analysis can be used for this purpose. This method was used to assess the representativeness of current ex situ and in situ conservation actions of 234 priority crop wild relatives (CWR) in Indonesia. This analysis also included species distribution modelling, the creation of an ecogeographical land characterization map, and a complementarity analysis to identify priorities area for in situ conservation and for further collecting of ex situ conservation programmes. The results show that both current ex situ and in situ conservation actions are insufficient. Sixty-six percent of priority CWRs have no recorded ex situ collections. Eighty CWRs with ex situ collections are still under-represented in the national genebanks and 65 CWRs have no presence records within the existing protected area network although 60 are predicted to exist in several protected areas according to their potential distribution models. The complementarity analysis shows that a minimum of 61 complementary grid areas (complementary based on grid cells) are required to conserve all priority taxa and 40 complementary protected areas (complementary based on existing protected areas) are required to conserve those with known populations within the existing in situ protected area network. The top ten of complementary protected areas are proposed as the initial areas for the development of CWR genetic reserves network in Indonesia. It is recommended to enhanced coordination between ex situ and in situ conservation stakeholders for sustaining the long term conservation of CWR in Indonesia. Implementation of the research recommendations will provide for the first time an effective conservation planning of Indonesia’s CWR diversity and will significantly enhance the country’s food and nutritional security.


2020 ◽  
Vol 1 (1) ◽  
pp. 17-24
Author(s):  
Jens Weibull ◽  
Jade Phillips

In 2015, the Nordic countries (Sweden, Denmark, Finland, Norway and Iceland) initiated a project to help strengthen the efforts of conservation and use of crop wild relatives (CWR) across the region. Policy recommendations that were put forward included creating national strategies for each Nordic country and adopting and implementing complementary in situ conservation as the main approach for safeguarding CWR across the region. The present work explores in greater detail the situation for Sweden. Taxa rich areas and areas where potential data bias may be prevalent are located. An eco-geographic map is constructed to help determine how genetic diversity may be portioned across the country within populations of taxa. An in situ complementarity analysis accounting for taxa richness, eco-geographic richness and the protected area network in the country is also presented. Possible reasons for diverging results, as compared to the regional analysis, are discussed. The document serves as a starting point for further in-depth research on CWR distribution, conservation and use within Sweden.



Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 638
Author(s):  
Marcelo B. Medeiros ◽  
José F. M. Valls ◽  
Aluana G. Abreu ◽  
Gustavo Heiden ◽  
Suelma Ribeiro-Silva ◽  
...  

This study presents the status of ex situ and in situ conservation for the crop wild relatives of rice, potato, sweet potato, and finger millet in Brazil, and the subsequent germplasm collection expeditions. This research is part of a global initiative entitled “Adapting Agriculture to Climate Change: Collecting, Protecting, and Preparing Crop Wild Relatives” supported by the Global Crop Diversity Trust. Species of the primary, secondary, and tertiary gene pools with occurrences reported in Brazil were included: Oryza alta Swallen, O. grandiglumis (Döll) Prod., O. latifolia Desv., O. glumaepatula Steud., Eleusine tristachya (Lam.) Lam., E. indica (L.) Gaertn., Solanum commersonii Dunal, S. chacoense Bitter, Ipomoea grandifolia (Dammer) O’Donell, I. ramosissima (Poir.) Choisy, I. tiliacea (Willd.) Choisy, I. triloba L., and I. cynanchifolia Meisn. The status of the ex situ and in situ conservation of each taxon was assessed using the gap analysis methodology, and the results were used to plan 16 germplasm collection expeditions. Seeds of the collected material were evaluated for viability, and the protocols for seed germination and cryopreservation were tested. The final conservation score, resulting from the gap analysis and including the average of the ex situ and in situ scores, resulted in a classification of medium priority of conservation for all the species, with the exception of I. grandifolia (high priority). The total accessions collected (174) almost doubled the total accessions of these crop wild relatives incorporated in Embrapa’s ex situ conservation system prior to 2015. In addition, accessions for practically absent species were collected for the ex situ conservation system, such as Ipomoea species, Eleusine indica, and Solanum chacoense. The methods used for dormancy breaking and low temperature conservation for the Oryza, Eleusine, and Ipomoea species were promising for the incorporation of accessions in the respective gene banks. The results show the importance of efforts to collect and conserve ex situ crop wild relatives in Brazil based on previous gap analysis. The complementarity with the in situ strategy also appears to be very promising in the country.



Oryx ◽  
2011 ◽  
Vol 45 (2) ◽  
pp. 191-200 ◽  
Author(s):  
Héctor M. Hernández ◽  
Carlos Gómez-Hinostrosa

AbstractWe used distribution data of 121 cactus species endemic to the Chihuahuan Desert to test the effectiveness of the region’s protected area network. The analysis of species distribution using a 30′ latitude × 30′ longitude grid facilitated the identification and categorization of areas of endemism. We found a low degree of coincidence between protected areas and the areas of cactus endemism, and only 63.6% of the 121 species occur in protected areas. A complementarity analysis showed that 10 of the protected areas contain the 77 species that occur in protected areas. The four top priority areas protect 65 (84.4%) of these 77 species The 44 unprotected species are mainly micro-endemic and taxonomically distinctive taxa widely scattered in the region. The complementarity analysis applied to these species showed that all of them can be contained in a minimum of 24 grid squares, representing 32.9% of the total area occupied. Their strong spatial dispersion, along with their narrow endemism, is a major conservation challenge. We conclude that the current protected area network is insufficient to protect the rich assemblage of cacti endemic to the Chihuahuan Desert. Conservation efforts in this region should be enhanced by increasing the effectiveness of the already existing protected areas and by the creation of additional protected areas, specifically micro-reserves, to provide refuge for the unprotected species.



Author(s):  
Nolipher Khaki Mponya ◽  
Tembo Chanyenga ◽  
Joana Magos Brehm ◽  
Nigel Maxted

Abstract The study analysed the conservation gaps of the priority crop wild relatives (CWR) taxa for Malawi in order to contribute to the development of a harmonized conservation strategy that helps secure the priority CWR under in situ and ex situ. We used taxa distribution modelling, complementarity analysis and ecogeographic land characterization map to analyse spatial diversity and distribution of 123 priority taxa across different adaptive scenarios. We identified areas of observed and predicted richness, the minimum number of protected areas (PAs) that conserve the broadest ecogeographic diversity in situ and the minimum number of grid cells that capture highest diversity outside PAs to recommend the establishment of genetic reserves. We then analysed the representativeness of the conserved ecogeographic diversity of target taxa in ex situ collections to identify ex situ conservation gaps and advise for priority areas for ex situ collections. For the 123 taxa, 70.7% of the total diversity occurs in 36 PAs with 66.8% of the diversity captured in only 10 complementary PAs. Outside PAs, the broadest diversity was conserved in three grid cells of size 5 × 5 km. Fifty-three of 123 taxa have ex situ collections with only three taxa having ex situ collections at the Malawi Plant Genetic Resources Centre. The findings of this study will guide formulation of conservation actions for the priority taxa as well as lobbying for active conservation of the same under in situ and ex situ.



VAVILOVIA ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 12-30
Author(s):  
L. Yu. Shipilina

Background. Preservation of crop wild relatives (CWR) as natural suppliers of genetic source material (GSM) is the foundation of food security. In situ conservation is considered the highest priority method. By preserving species in their natural communities, we safeguard all the genetic diversity that can be used as sources of valuable economic traits. The criteria developed by the International Union for Conservation of Nature and Natural Resources (IUCN) are unable to assess the significance of crop wild relatives at the regional level. With this in view, we have used the vulnerability status categories developed at VIR. Materials and methods. Crop wild relatives of Vologda Province were the target of the study. Research material was selected in VIR’s herbarium collection (WIR, LE), along with literary data and the results of the plant exploration surveys by VIR’s scientists. The species listed in the Red Books of Leningrad, Pskov and Novgorod Provinces, the Red Book of Karelia, and the list of rare and endangered plants (2015) of Vologda Province were analyzed. For the first time, plants were tested specifically to determine the species’ vulnerability degree. On the basis of such testing, CWR requiring special conservation measures were identified. Results and conclusions. Sixty-six CWR species that require in situ conservation occur in Vologda Province. The collected materials helped to develop databases of locations for the taxa studied. In total, we identified nine species with the vulnerability status of Category I (Corylus avellana L., Onobrychis arenaria (Kit.) Ser., Phleum phleoides (L.) Karst., Thymus talijevii Klok. Et Shost., Bistorta vivipara (L.) S.F. Gray, Gypsophila fastigiata L., Koeleria glauca (Spreng.) DC., Leymus arenarius (L.) Hochst., and Scorzonera glabra Rupr.). Maps of the species with the first vulnerability status category were made. Category II was assigned to 19 species; Category III, to 38 species. The species requiring special conservation efforts were identified: relicts (11 spp.) and endemics (1 sp.). Twenty-eight species are in the list of rare and endangered plants (2015) of Vologda Province. Nizhnesukhonsky floristic area stands out for its rich CWR diversity. In addition to in situ conservation within protected areas of various ranks, the species included into Categories I and II should be conserved ex situ in botanical gardens and genetic collections held by research institutes in the northwest of Russia.



Diversity ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 315 ◽  
Author(s):  
Carlos Mestanza-Ramón ◽  
Sujan M. Henkanaththegedara ◽  
Paola Vásconez Duchicela ◽  
Yadira Vargas Tierras ◽  
Maritza Sánchez Capa ◽  
...  

Biodiversity is vital for the stability of the planet; its ecosystem services provide essential elements for our survival and well-being. This review analyzes the national biodiversity policies and describes the main strategies for biodiversity conservation in Ecuador, one of the “mega-diverse” countries in the world with the highest species density. It deepens an analysis of in-situ and ex-situ conservation processes. Ecuador has six clear policies for biodiversity conservation. These policies strengthen biodiversity conservation through mechanisms that improve the well-being of wildlife by ensuring human, wildlife and ecosystem health. It promotes actions for the welfare of wildlife, through technical, administrative and legal tools. The National System of Protected Areas, with 60 protected areas, is the most effective in-situ conservation instrument at the country level. Several ex-situ conservation and management means for the conservation of wild species are being utilized, including nurseries, botanical gardens, zoos, germplasm banks, aquariums, species reproduction and rehabilitation centers. Ecuador is making slow progress on ex-situ conservation despite the availability of a sound policy framework, possibly due to financial, infrastructural, and/or technological challenges, and knowledge gaps. We propose fostering international research collaborations and establishing fully funded small-scale captive breeding programs at zoos, aquariums and university research facilities to help recovery of at-risk species of reptiles, amphibians, fish and species beyond Galapagos region. We recommend utilizing citizen science programs to fill the gaps of biodiversity information and increasing efforts to revive the ex-situ conservation strategies in protecting the unique biodiversity of Ecuador.



1996 ◽  
Vol 72 (4) ◽  
pp. 406-415 ◽  
Author(s):  
Alvin D. Yanchuk ◽  
Donald T. Lester

Gene conservation of native conifer species in British Columbia is considered necessary primarily to safeguard the future evolutionary potential of species to climate change, new biotic challenges and for commercial genetic improvement programs. The tactical options include: (i) maintaining existing protected areas, (ii) creating new reserves for in situ management, and (iii) ex situ collections of various types.A two-part strategy is presented, with emphasis on technical justifications, for the conservation of conifer tree genetic resources of 23 British Columbia species. Part I is a survey of the frequency of each species in current land reserves in BC. Part II outlines an approach that will aid in setting priorities for additional gene conservation activities for specific species. This process attempts to use information on: (i) levels of in situ protection, (ii) the status of each species in current provenance research and breeding programs, and (iii) the relative capabilities for natural regeneration for each species.Representation of the 23 native conifer species in the current network of protected areas is generally complete. For instance, western hemlock is under little threat, as extensive ex situ collections are in field tests; it is well protected in the current reserve network, and it has a great capacity for natural regeneration. At the other extreme, whitebark pine has no ex situ collections made to date, needs additional protection in some ecoregions of the province, and generally has poor natural regeneration potential. While implementation of our strategy will be an ongoing process (i.e. updating information from both new and old in situ reserves, and setting new priorities among species), several immediate issues have been noted. These include; (i) follow-up work in the area of population sampling for ex situ collections, (ii) "ground truthing" of current reserves where data are weak, and (iii) examining the merit of certain populations not located in BC (as they could be as important as those currently protected in BC).For the future, various broad management questions will need to be resolved, such as: (i) whether existing reserves will perpetuate the various gene pools, and what management will be appropriate for such areas, (ii) the impact of pollen migration from genetically improved production stands on reserve stands, and (iii) the role of commercially improved stands and the breeding populations themselves to meet gene conservation objectives. Key words: gene conservation, native conifers, British Columbia, tree genetics



Author(s):  
B. K. Sharma ◽  
Seema Kulshreshtha ◽  
Shailja Sharma ◽  
Sonali Singh ◽  
Anita Jain ◽  
...  


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1179d-1179
Author(s):  
Gary Paul Nabhan ◽  
Mahina Drees ◽  
Kevin Dahl

The binational Southwest remains rich in native crop land races and crop wild relatives, despite numerous pressures favoring genetic erosion. Native Seeds/SEARCH is promoting in situ conservation in traditional Indian fields and nearby wild habitats, but also maintains a gene bank as a back-up, to allow future reintroductions. Seeds are distributed to Native American communities for free, and their value is reinforced through a variety of educational materials and presentations. Our regional focus allows us to serve as an effective bridge between in situ and ex situ conservationists, between Indian and international organizations, and between tribes. Methods, ethics and accomplishments to date will be highlighted.



HortScience ◽  
2016 ◽  
Vol 51 (6) ◽  
pp. 653-663 ◽  
Author(s):  
L.J. Grauke ◽  
Bruce W. Wood ◽  
Marvin K. Harris

Long-established native tree populations reflect local adaptations. Representation of diverse populations in accessible ex situ collections that link information on phenotypic expression to information on spatial and temporal origination is the most efficient means of preserving and exploring genetic diversity, which is the foundation of breeding and crop improvement. Throughout North America, sympatric Carya species sharing the same ploidy level tend to hybridize, permitting gene flow that contributes to regional diversity and adaptation. The topographic isolation of many fragmented populations, some of which are small, places native Carya populations of United States, Mexico, and Asia in a vulnerable position and justifies systematic collection and characterization. The characterization of indigenous Mexican pecan and other Carya populations will facilitate use for rootstocks and scion breeding and will contribute to pecan culture. The Asian species, as a group, are not only geographically isolated from North American species, but also occur in disjunct, fragmented populations isolated from other Asian species. Section Sinocarya includes the members of the genus most vulnerable to genetic loss. With all species, recognition of utility based on characterization of ex situ collections may contribute to the establishment of in situ reserves. Global Carya genetic resources should be cooperatively collected, maintained, characterized, and developed. The integration of crop wild relatives into characterization and breeding efforts represents a challenging opportunity for both domestic and international cooperation. Genomic tools used on the accessible collections of the National Collection of Genetic Resources for Pecans and Hickories (NCGR-Carya) offer great potential to elucidate genetic adaptation in relation to geographic distribution. The greatest progress will be made by integrating the disciplines of genetics, botany, pathology, entomology, ecology, and horticulture into internationally cooperative efforts. International germplasm exchange is becoming increasingly complicated by a combination of protectionist policies and legitimate phytosanitary concerns. Cooperative international evaluation of in situ autochthonous germplasm provides a valuable safeguard to unintended pathogen exchange associated with certain forms of germplasm distribution, while enabling beneficial communal exploration and directed exchange. This is threatened by the “proprietary” focus on intellectual property. The greatest risk to the productive development of the pecan industry might well be a myopic focus on pecan production through the lens of past practice. The greatest limitation to pecan culture in the western United States is reduced water quantity and quality; in the eastern United States the challenge is disease susceptibility; and insufficient cold hardiness in the northern United States. The greatest benefit for the entire industry might be achieved by tree size reduction through both improved rootstocks and scions, which will improve both nut production and tree management, impacting all areas of culture. This achievement will likely necessitate incorporation of crop wild relatives in breeding, broad cooperation in the testing leading to selection, and development of improved methods linking phenotypic expression to genomic characterization. The development of a database to appropriately house information available to a diverse research community will facilitate cooperative research. The acquisition of funds to pursue development of those tools will require the support of the pecan industry, which in the United States, is regionally fragmented and focused on marketing rather than crop development.



Sign in / Sign up

Export Citation Format

Share Document