Availability of soil base cations and micronutrients along soil profile after 13-year nitrogen and water addition in a semi-arid grassland

2021 ◽  
Author(s):  
Guoxiang Niu ◽  
Ruzhen Wang ◽  
Muqier Hasi ◽  
Yinliu Wang ◽  
Qianqian Geng ◽  
...  
Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 549-556 ◽  
Author(s):  
Linyou Lü ◽  
Ruzhen Wang ◽  
Heyong Liu ◽  
Jinfei Yin ◽  
Jiangtao Xiao ◽  
...  

Abstract. Soil coarseness is the main process decreasing soil organic matter and threatening the productivity of sandy grasslands. Previous studies demonstrated negative effect of soil coarseness on soil carbon storage, but less is known about how soil base cations (exchangeable Ca, Mg, K, and Na) and available micronutrients (available Fe, Mn, Cu, and Zn) response to soil coarseness. In a semi-arid grassland of Northern China, a field experiment was initiated in 2011 to mimic the effect of soil coarseness on soil base cations and available micronutrients by mixing soil with different mass proportions of sand: 0 % coarse elements (C0), 10 % (C10), 30 % (C30), 50 % (C50), and 70 % (C70). Soil coarseness significantly increased soil pH in three soil depths of 0–10, 10–20 and 20–40 cm with the highest pH values detected in C50 and C70 treatments. Soil fine particles (smaller than 0.25 mm) significantly decreased with the degree of soil coarseness. Exchangeable Ca and Mg concentrations significantly decreased with soil coarseness degree by up to 29.8 % (in C70) and 47.5 % (in C70), respectively, across three soil depths. Soil available Fe, Mn, and Cu significantly decreased with soil coarseness degree by 62.5, 45.4, and 44.4 %, respectively. As affected by soil coarseness, the increase of soil pH, decrease of soil fine particles (including clay), and decline in soil organic matter were the main driving factors for the decrease of exchangeable base cations (except K) and available micronutrients (except Zn) through soil profile. Developed under soil coarseness, the loss and redistribution of base cations and available micronutrients along soil depths might pose a threat to ecosystem productivity of this sandy grassland.


2016 ◽  
Vol 61 ◽  
pp. 806-814 ◽  
Author(s):  
Ruzhen Wang ◽  
Courtney A. Creamer ◽  
Xue Wang ◽  
Peng He ◽  
Zhuwen Xu ◽  
...  

2016 ◽  
Author(s):  
L. Lü ◽  
R. Wang ◽  
H. Liu ◽  
J. Yin ◽  
Z. Wang ◽  
...  

Abstract. Soil coarseness is the main process decreasing soil organic matter and threatening the productivity of sandy grasslands. Previous studies demonstrated negative effect of soil coarseness on soil carbon storage, but less is kn own about how soil base cations (exchangeable Ca, Mg, K, and Na) and available micronutrients (available Fe, Mn, Cu, and Zn) response to soil coarseness. In a semi-arid grassland of northern China, a field experiment was initiated in 2011 to mimic the effect of soil coarseness on soil base cations and available micronutrients by mixing soil with different mass proportions of sand: 0 % coarse elements (C0), 10 % (C10), 30 % (C30), 50 % (C50), and 70 % (C70). Soil coarseness significantly increased soil pH in three soil depths of 0–10 cm, 10–20 cm and 20–40 cm with the highest pH values detected in C50 and C70 treatments. Soil fine particles (smaller than 0.25 mm) significantly decreased with the degree of soil coarseness. Exchangeable Ca and Mg concentrations significantly decreased with soil coarseness degree by up to 29.8 % (in C70) and 47.5 % (in C70), respectively, a cross three soil depths. Soil available Fe, Mn and Cu significantly decreased with soil coarseness degree by 62.5 %, 45.4 % and 44.4 %, respectively. As affected by soil coarseness, the increase of soil pH, decrease of soil fine particles (including clay), and decline in soil organic matter were the main driving factors for the decrease of exchangeable base cations (except K) and available micronutrients (except Zn) through soil profile. Developed under soil coarseness, the loss and redistribution of base cations and available micronutrients along soil depths might pose threat to ecosystem productivity of this sandy grassland.


2015 ◽  
Vol 81 ◽  
pp. 159-167 ◽  
Author(s):  
Ruzhen Wang ◽  
Maxim Dorodnikov ◽  
Shan Yang ◽  
Yongyong Zhang ◽  
Timothy R. Filley ◽  
...  

Weed Science ◽  
1971 ◽  
Vol 19 (4) ◽  
pp. 381-384 ◽  
Author(s):  
C. J. Scifres ◽  
R. R. Hahn ◽  
J. Diaz-Colon ◽  
M. G. Merkle

Residues in soil, following application of 0.25 lb/A of 4-amino-3,5,6-trichloropicolinic acid (picloram) to semi-arid rangelands, usually were restricted to the top 12 inches for 60 days. Five ppb or less picloram were detected below 12 inches at 120 to 180 days after application; but picloram usually dissipated from the soil profile within a year. More picloram was detected 5 months after application at 6 to 18 inches deep at the lower ends of plots with 3% slopes than in plots with 0, 1, or 2% slopes. Runoff water from plots irrigated 10 days after treatment contained 17 ppb picloram. Irrigation or rainfall at 20, 30, or 45 days after picloram application resulted in less than 1 ppb picloram in runoff water. No more than 1 or 2 ppb picloram were detected after dilution of runoff water in large ponds.


Sign in / Sign up

Export Citation Format

Share Document