Divergent roles of iron and aluminum in sediment organic matter association at the terrestrial–aquatic interface

2022 ◽  
Author(s):  
Kai Nils Nitzsche ◽  
Zachary E. Kayler ◽  
Katrin Premke ◽  
Arthur Gessler ◽  
Rota Wagai
2013 ◽  
Vol 67 (11) ◽  
pp. 2616-2621 ◽  
Author(s):  
Ying-Heng Fei ◽  
Xiao-Yan Li

The effect of decomposition and diagenesis of sediment organic matter (SOM) on the adsorption of emerging pollutants by the sediment has been seldom addressed. In the present experimental study, artificial sediment was incubated to simulate the natural organic diagenesis process and hence investigate the influence of organic diagenesis on the adsorption of tetracyclines (TCs) by marine sediment. During a period of 4 months of incubation, SOM initially added into the sediment underwent biodegradation and diagenesis. The results showed an early decrease in TC adsorption by the sediment, which was likely caused by the competition between the microbial organic products and TC molecules for the adsorption sites. Afterward, TC adsorption by the sediment increased significantly, which was mainly due to the accumulation of condensed SOM. The experimental results indicate the interactions between TCs and the sediment during the dynamic process of SOM diagenesis. Moreover, the remaining SOM is shown to have an increasing affinity with the antibiotics.


2017 ◽  
Vol 76 (12) ◽  
pp. 3269-3277 ◽  
Author(s):  
B. Neethu ◽  
M. M. Ghangrekar

Abstract Sediment microbial fuel cells (SMFCs) are bio-electrochemical devices generating electricity from redox gradients occurring across the sediment–water interface. Sediment microbial carbon-capture cell (SMCC), a modified SMFC, uses algae grown in the overlying water of sediment and is considered as a promising system for power generation along with algal cultivation. In this study, the performance of SMCC and SMFC was evaluated in terms of power generation, dissolved oxygen variations, sediment organic matter removal and algal growth. SMCC gave a maximum power density of 22.19 mW/m2, which was 3.65 times higher than the SMFC operated under similar conditions. Sediment organic matter removal efficiencies of 77.6 ± 2.1% and 61.0 ± 1.3% were obtained in SMCC and SMFC, respectively. With presence of algae at the cathode, a maximum chemical oxygen demand and total nitrogen removal efficiencies of 63.3 ± 2.3% (8th day) and 81.6 ± 1.2% (10th day), respectively, were observed. The system appears to be favorable from a resources utilization perspective as it does not depend on external aeration or membranes and utilizes algae and organic matter present in sediment for power generation. Thus, SMCC has proven its applicability for installation in an existing oxidation pond for sediment remediation, algae growth, carbon conversion and power generation, simultaneously.


Sign in / Sign up

Export Citation Format

Share Document