scholarly journals The evolutionary contingency thesis and evolutionary idiosyncrasies

2019 ◽  
Vol 34 (2) ◽  
Author(s):  
T. Y. William Wong
2006 ◽  
Vol 16 (19) ◽  
pp. R825-R826 ◽  
Author(s):  
Douglas H. Erwin

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Jeroen Meijer ◽  
Bram van Dijk ◽  
Paulien Hogeweg

AbstractMetabolic exchange is widespread in natural microbial communities and an important driver of ecosystem structure and diversity, yet it remains unclear what determines whether microbes evolve division of labor or maintain metabolic autonomy. Here we use a mechanistic model to study how metabolic strategies evolve in a constant, one resource environment, when metabolic networks are allowed to freely evolve. We find that initially identical ancestral communities of digital organisms follow different evolutionary trajectories, as some communities become dominated by a single, autonomous lineage, while others are formed by stably coexisting lineages that cross-feed on essential building blocks. Our results show how without presupposed cellular trade-offs or external drivers such as temporal niches, diverse metabolic strategies spontaneously emerge from the interplay between ecology, spatial structure, and metabolic constraints that arise during the evolution of metabolic networks. Thus, in the long term, whether microbes remain autonomous or evolve metabolic division of labour is an evolutionary contingency.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Tero Ijäs ◽  
Rami Koskinen

AbstractThis paper analyzes the notion of possibility in biology and demonstrates how synthetic biology can provide understanding on the modal dimension of biological systems. Among modal concepts, biological possibility has received surprisingly little explicit treatment in the philosophy of science. The aim of this paper is to argue for the importance of the notion of biological possibility by showing how it provides both a philosophically and biologically fruitful category as well as introducing a new practically grounded way for its assessment. More precisely, we argue that synthetic biology can provide tools to scientifically anchor reasoning about biological possibilities. Two prominent strategies for this are identified and analyzed: the design of functionally new-to-nature systems and the redesign of naturally occurring systems and their parts. These approaches allow synthetic biologists to explore systems that are not normally evolutionarily accessible and draw modal inferences that extend in scope beyond their token realizations. Subsequently, these results in synthetic biology can also be relevant for discussions on evolutionary contingency, providing new methods and insight to the study of various sources of unactualized possibilities in biology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jakob I. Friis ◽  
Torben Dabelsteen ◽  
Gonçalo C. Cardoso

AbstractSexual signals are archetypes of contingent evolution: hyper-diverse across species, often evolving fast and in unpredictable directions. It is unclear to which extent their evolutionary unpredictability weakens deterministic evolution, or takes place bounded by deterministic patterns of trait evolution. We compared the evolution of sound frequency in sexual signals (advertisement songs) and non-sexual social signals (calls) across > 500 genera of the crown songbird families. Contrary to the acoustic adaptation hypothesis, we found no evidence that forest species used lower sound frequencies in songs or calls. Consistent with contingent evolution in song, we found lower phylogenetic signal for the sound frequency of songs than calls, which suggests faster and less predictable evolution, and found unpredictable direction of evolution in lineages with longer songs, which presumably experience stronger sexual selection on song. Nonetheless, the most important deterministic pattern of sound frequency evolution—its negative association with body size—was stronger in songs than calls. This can be explained by songs being longer-range signals than most calls, and thus using sound frequencies that animals of a given size produce best at high amplitude. Results indicate that sexual selection can increase aspects of evolutionary contingency while strengthening, rather than weakening, deterministic patterns of evolution.


Sign in / Sign up

Export Citation Format

Share Document