scholarly journals Field measurements of snow-drift threshold and mass fluxes, and related model simulations

2004 ◽  
Vol 113 (3) ◽  
pp. 347-368 ◽  
Author(s):  
Judith J. JDoorschot ◽  
Michael Lehning ◽  
Anouck Vrouwe
2004 ◽  
Vol 113 (3) ◽  
pp. 347-368 ◽  
Author(s):  
Judith JDoorschot ◽  
Michael Lehning ◽  
Anouck Vrouwe

2015 ◽  
Vol 15 (21) ◽  
pp. 31537-31586 ◽  
Author(s):  
M. Krämer ◽  
C. Rolf ◽  
A. Luebke ◽  
A. Afchine ◽  
N. Spelten ◽  
...  

Abstract. The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e. in the Ice Water Content-Temperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from seventeen aircraft campaigns, conducted in the last fifteen years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as Southern and Northern America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated cirrus guide. For example, high/low IWCs are found together with high/low ice crystal concentrations Nice. An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type is rather thin with lower IWCs and forms directly as ice (in-situ origin cirrus). The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e. via freezing of liquid droplets – liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K). In the European field campaigns, in-situ origin cirrus occur frequently at slow updrafts in low and high pressure systems, but also in conjunction with faster updrafts. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In the US and tropical campaigns, thick liquid origin cirrus which are formed in large convective systems are detected more frequently.


2016 ◽  
Vol 106 (3) ◽  
pp. 335-345 ◽  
Author(s):  
Martin Burger ◽  
Van R. Haden ◽  
Han Chen ◽  
Johan Six ◽  
William R. Horwath

2003 ◽  
Author(s):  
Brian G. Leib ◽  
Jay D. Jabro ◽  
Albert R. Jarrett

2016 ◽  
Vol 16 (5) ◽  
pp. 3463-3483 ◽  
Author(s):  
Martina Krämer ◽  
Christian Rolf ◽  
Anna Luebke ◽  
Armin Afchine ◽  
Nicole Spelten ◽  
...  

Abstract. The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e., in the Ice Water Content-Temperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from 17 aircraft campaigns, conducted in the last 15 years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as South and North America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated Cirrus Guide. For example, high (low) IWCs are found together with high (low) ice crystal concentrations Nice. An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type forms directly as ice (in situ origin cirrus) and splits in two subclasses, depending on the prevailing strength of the updraft: in slow updrafts these cirrus are rather thin with lower IWCs, while in fast updrafts thicker cirrus with higher IWCs can form. The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e., via freezing of liquid droplets – liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K). In the European field campaigns, slow updraft in situ origin cirrus occur frequently in low- and high-pressure systems, while fast updraft in situ cirrus appear in conjunction with jet streams or gravity waves. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In the US and tropical campaigns, thick liquid origin cirrus which are formed in large convective systems are detected more frequently.


2009 ◽  
Vol 9 (13) ◽  
pp. 4315-4327 ◽  
Author(s):  
C. Zhao ◽  
Y. Wang ◽  
Y. Choi ◽  
T. Zeng

Abstract. Global-scale chemical transport model simulations indicate lightning NOx dominates upper tropospheric O3 production above Eastern North America during summertime but vary in their estimates. To improve our understanding, a regional-scale model (REAM) with higher resolution is applied. To examine the uncertainties in modeling the impact of convective transport and lightning NOx production on upper tropospheric chemical tracer distributions, REAM simulations of chemical tracers are driven by two meteorological models, WRF and MM5, with different cumulus convective parameterizations. The model simulations are evaluated using INTEX-A aircraft measurements and satellite measurements of NO2 columns and cloud top pressure, and we find that mid and upper tropospheric trace gas concentrations are affected strongly by convection and lightning NOx production. WRF with the KF-eta convection scheme simulates larger convective updraft mass fluxes below 150 hPa than MM5 with the Grell scheme. The inclusion of the entrainment and detrainment processes leads to more outflow in the mid troposphere in WRF than MM5. The ratio of C2H6/C3H8 is found to be a sensitive parameter to convective outflow; the simulation by WRF-REAM is in closer agreement with INTEX-A measurements than MM5-REAM, implying that convective mass fluxes by WRF are more realistic. WRF also simulates lower cloud top heights (10–12 km) than MM5 (up to 16 km), and hence smaller amounts of estimated (intra-cloud) lightning NOx and lower emission altitudes. WRF simulated cloud top heights are in better agreement with GOES satellite measurements than MM5. Simulated lightning NOx production difference (due primarily to cloud top height difference) is mostly above 12 km. At 8–12 km, the models simulate a contribution of 60–75% of NOx and up to 20 ppbv of O3 from lightning, although the decrease of lightning NOx effect from the Southeast to Northeast and eastern Canada is overestimated. The model differences and biases found in this study reflect some major uncertainties of upper tropospheric NOx and O3 simulations driven by those in meteorological simulations and lightning parameterizations.


Sign in / Sign up

Export Citation Format

Share Document