scholarly journals Surface-Layer Similarity Functions for Dissipation Rate and Structure Parameters of Temperature and Humidity Based on Eleven Field Experiments

2016 ◽  
Vol 160 (3) ◽  
pp. 501-527 ◽  
Author(s):  
Linda M. J. Kooijmans ◽  
Oscar K. Hartogensis
2014 ◽  
Vol 71 (2) ◽  
pp. 716-733 ◽  
Author(s):  
Björn Maronga

Abstract Large-eddy simulations (LESs) of free-convective to near-neutral boundary layers are used to investigate the surface-layer turbulence. The article focuses on the Monin–Obukhov similarity theory (MOST) relationships that relate the structure parameters of temperature and humidity to the surface fluxes of sensible and latent heat, respectively. Moreover, the applicability of local free convection (LFC) similarity scaling is studied. The LES data suggest that the MOST function for is universal. It is shown to be within the range of the functions proposed from measurement data. It is found that follows MOST if entrainment of dry air from the free atmosphere is sufficiently small. In this case the similarity functions for and are identical. If entrainment is significant, dissimilarity between the transport of sensible heat and moisture is observed and no longer follows MOST. In the free-convection limit the LFC similarity functions should collapse to universal constants. The LES data suggest values around 2.7, which is in agreement with the value proposed in the literature. As for MOST, the LFC similarity constant for becomes nonuniversal if entrainment of dry air is significant. It is shown that LFC scaling is applicable even if shear production of turbulence is moderately high.


2020 ◽  
Author(s):  
Prabhakar Namdev ◽  
Maithili Sharan ◽  
Saroj Kanta Mishra

<p>The lowest portion of the planetary boundary layer (PBL), where the turbulent fluxes are assumed to be constant, is known as the atmospheric surface layer (ASL). Within the surface layer, the surface exchange processes play an important role in land-atmosphere interaction. Thus, a precise formulation of the surface fluxes is crucial to ensure an adequate atmospheric evolution by numerical models. The Monin–Obukhov Similarity Theory (MOST) is a widely used framework to estimate the surface turbulent fluxes within the surface layer. MOST uses similarity functions of momentum (φ<sub>m</sub>) and heat (φ<sub>h</sub>) for non-dimensional wind and temperature profiles. Over the years, various formulations for these similarity functions have been proposed by the researchers ranging from linear to non-linear forms. These formulations have limitations in the weak wind, stable, and unstable atmospheric conditions. In the surface layer scheme currently available in the Community Atmosphere Model version 5 (CAM5.0), the stable and unstable regimes are divided into four parts, and the corresponding similarity functions are the functions proposed by Kader and Yaglom (1990) for strong unstable stratification, by Businger et al. (1971) for weak unstable stratification, functions by Dyer (1974) for weak stable stratification, and for moderate to strongly stable stratification, the functions from Holtslag et al. (1990) have been utilized. The criteria used for this classification are somewhat ad-hoc, and there is an abrupt transition between different regimes encountered.            </p><p>       In the present study, an effort has been made to implement the similarity functions proposed by Grachev et al. (2007) for stable conditions and Fairall et al. (1996) for unstable conditions in the surface layer scheme of Community Land Model (CLM) for CAM5.0. In the modified version, the similarity functions for unstable conditions are a combination of commonly used Paulson type expressions for near-neutral stratification and an expression proposed by Carl et al. (1973) that takes in to account highly convective conditions. Similarly, the formulation proposed by Grachev et al., for stable conditions, can cover a wider range of stable stratifications. The simulations with CAM5 model using the existing and modified version of surface layer scheme have been performed with 1° resolution for ten years, and the impact of modified functions on the simulation of various important near-surface variables over the tropical region is analyzed. It is found that the scheme with modified functions improving the simulation of surface variables as compared with the existing scheme over the tropical region. In addition, the limitations arbitrarily imposed on particular variables in the existing surface layer scheme can be eliminated or suppressed by using these modified functions.  </p><p>References:</p><p>Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air-sea fluxes for tropical ocean global atmosphere coupled-ocean atmosphere response experiment. J Geophys Res 101(C2):3747–3764</p><p>Grachev, A.A., Andreas, E.L., Fairall, C.W., Guest, P.S. and Persson, P.O.G. (2007a) SHEBA: flux–profile relationships in stable atmospheric boundary layer. Boundary-Layer Meteorology,124, 315–333.</p><p>Keywords:</p><p>Boundary layer, Turbulence, Climate Model, Surface Fluxes</p>


1997 ◽  
Vol 506 ◽  
Author(s):  
E. Smailos ◽  
D. Schild ◽  
K. Gompper

ABSTRACTThe combined influence of gamma radiation (10 Gy/h) and high temperature (150 °C) on the corrosion of the promising HLW container material Ti99.8-Pd was investigated in an MgCl2-rich brine, and the corrosion surface films formed were characterized by XPS. For comparison, specimens without irradiation were also examined.Under the test conditions used, the alloy Ti99.8-Pd is resistant to local corrosion and its general corrosion is negligible low. The thin corrosion films formed on the surface of unirradiated specimens and in the crevices of specimens exposed to radiation consist of TiO2. However, outside the crevices of irradiated specimens, a surface layer consisting of Mg (main component of the brine) and Si (impurity in the brine) oxide is built up over the TiO2 layer. Comparable TiO2 layer thicknesses (30 - 65 nm, depending on the experimental conditions) are found for unirradiated and irradiated laboratory specimens. The TiO2 layer formed on the in-situ corrosion specimens (33 nm / 5.3 years) is thinner than that of the laboratory specimens (58 nm / 191 days) indicating less aggressive conditions in the field experiments. In view of these results, the alloy Ti99.8-Pd continues to be considered as a strong candidate container material and will be further investigated.


Sign in / Sign up

Export Citation Format

Share Document