stable surface layer
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 0)

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1095
Author(s):  
Mauro Mazzola ◽  
Angelo Pietro Viola ◽  
Taejin Choi ◽  
Francesco Tampieri

The availability of 5-year time series of velocity and temperature data from two sonic anemometers installed at Jang Bogo Station, Antarctica, allowed a systematic investigation of the turbulence features in a stable layer affected by submeso motions and characterized by the vertical divergence of some second-order moments for a large fraction of time (quite a non-ideal surface layer). The investigation of the effect of the averaging time interval on the statistics of the second-order moments showed that this is greater for the variances of the velocity components with respect to that for the vertical fluxes. This corresponds to a greater contribution from low-frequency motions. The turbulence statistics were investigated and compared with current literature results in terms of vertical structure, share of energy between horizontal and vertical components, skewness of the vertical velocity and turbulent velocities. As a general result, all the normalized second-order moments show a clear change passing from neutral to stable conditions, passing through the range of bulk Richardson number equal to 0.1–1.


2021 ◽  
Author(s):  
Vladimir Gryanik ◽  
Christof Luepkes ◽  
Andrey Grachev ◽  
Dmitry Sidorenko

<p><span>Results of weather forecast, present-day climate simulations and future climate projections depend among other factors on the interaction between the atmosphere and the underlying sea-ice, the land and the ocean. In numerical weather prediction and climate models some of these interactions are accounted for by transport coefficients describing turbulent exchange of momentum, heat and moisture. Currently used transfer coefficients have, however, large uncertainties in flow regimes being typical for cold nights and seasons, but especially in the polar regions. Furthermore, their determination is numerically complex. It is obvious that progress could be achieved when the transfer coefficients would be given by simple mathematical formulae in frames of an economic computational scheme. Such a new universal, so-called non-iterative parametrization scheme is derived for a package of transfer coefficients.</span></p><p><span>The derivation is based on the Monin-Obukhov similarity theory, which is over the years well accepted in the scientific community. The newly derived non-iterative scheme provides a basis for a cheap systematic study of the impact of near-surface turbulence and of the related transports of momentum, heat and moisture in NWP and climate models. </span></p><p><span>We show that often used transfer coefficients like those of Louis et al. (1982) or of Cheng and Brutsaert (2005) can be applied at large stability only with some caution, keeping in mind that at large stability they significantly overestimate the transfer coefficient compared with most comprehensive measurements. The latter are best reproduced by Gryanik et al. (2020) functions, which are part of the package. We show that the new scheme is flexible, thus, new stability functions can be added to the package, if required. </span></p><p> </p><p> <span>Gryanik, V.M., Lüpkes, C., Grachev, A., Sidorenko, D. (2020) New Modified and Extended Stability Functions for the Stable Boundary Layer based on SHEBA and Parametrizations of Bulk Transfer Coefficients for Climate Models, J. Atmos. Sci., 77, 2687-2716</span></p><p><br><br></p>


2020 ◽  
Vol 77 (8) ◽  
pp. 2687-2716
Author(s):  
Vladimir M. Gryanik ◽  
Christof Lüpkes ◽  
Andrey Grachev ◽  
Dmitry Sidorenko

Abstract Climate models still have deficits in reproducing the surface energy and momentum budgets in Arctic regions. One of the reasons is that currently used transfer coefficients occurring in parameterizations of the turbulent fluxes are based on stability functions derived from measurements over land and not over sea ice. An improved parameterization is developed using the Monin–Obukhov similarity theory (MOST) and corresponding stability functions that reproduce measurements over sea ice obtained during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. The new stability functions for the stable surface layer represent a modification of earlier ones also based on SHEBA measurements. It is shown that the new functions are superior to the former ones with respect to the representation of the measured relationship between the MOST stability parameter and the bulk Richardson number. Nevertheless, the functions fulfill the same criteria of applicability as the earlier functions and contain, as an extension, a dependence on the neutral-limit turbulent Prandtl number. Applying the new functions we develop an efficient noniterative parameterization of the near-surface turbulent fluxes of momentum and heat with transfer coefficients as a function of the bulk Richardson number (Rib) and roughness parameters. A hierarchy of transfer coefficients is recommended for weather and climate models. They agree better with SHEBA data for strong stability (Rib > 0.1) than previous parameterizations and they agree well with those based on the Businger–Dyer functions in the range Rib ≤ 0.1.


2020 ◽  
Author(s):  
René M. van Westen ◽  
Henk A. Dijkstra

Abstract. In 2016 and 2017, an open-ocean polynya appeared over Maud Rise. The formation of these polynyas has been attributed to the occurrence of intense winter storms. However, the evolution and lifetime of the two polynyas was quite different. Here, we use model output of a century long high-resolution climate model simulation to explain the differences between the 2016 and 2017 Maud Rise polynyas. Analysis of the results, using convective available potential energy to measure subsurface convection, leads us to the interpretation that the first polynya event is (partly) initiated by subsurface static instabilities, leading to subsurface convection. Subsurface convection associated with the formation of the 2016 polynya preconditioned the Maud Rise region, resulting in a weakly stable surface layer and eventually leading to the 2017 polynya event. Based on this, we argue that, apart from atmospheric variability, subsurface convection is important to initiate a Maud Rise polynya.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 449
Author(s):  
Patrick Market ◽  
Kevin Grempler ◽  
Paula Sumrall ◽  
Chasity Henson

A 10-year study of elevated severe thunderstorms was performed using The National Centers for Environmental Information Storm Events Database. A total of 80 elevated thunderstorm cases were identified, verified, and divided into “Prolific” and “Marginal” classes. These severe cases occurred at least 80 km away from, and on the cold side of, a surface boundary. The downdraft convective available potential energy (DCAPE), downdraft convective inhibition (DCIN), and their ratio are tools to help estimate the potential for a downdraft to penetrate through the depth of a stable surface layer. The hypothesis is that as the DCIN/DCAPE ratio decreases, there exists enhanced possibility of severe surface winds. Using the initial fields from the Rapid Refresh numerical weather prediction model, datasets of DCIN, DCAPE, and their ratio were created. Mann-Whitney U tests on the Prolific versus Marginal case sets were undertaken to determine if the DCAPE and DCIN values come from different populations for the two different case sets. Results show that the Prolific cases have values of DCIN closer to zero, suggesting the downdraft is able to penetrate to the surface causing severe winds. Thus, comparing DCIN and DCAPE is a viable tool in determining if downdrafts will reach the surface from elevated thunderstorms.


2017 ◽  
Vol 145 (10) ◽  
pp. 3969-3987 ◽  
Author(s):  
Weizhong Zheng ◽  
Michael Ek ◽  
Kenneth Mitchell ◽  
Helin Wei ◽  
Jesse Meng

This study examines the performance of the NCEP Global Forecast System (GFS) surface layer parameterization scheme for strongly stable conditions over land in which turbulence is weak or even disappears because of high near-surface atmospheric stability. Cases of both deep snowpack and snow-free conditions are investigated. The results show that decoupling and excessive near-surface cooling may appear in the late afternoon and nighttime, manifesting as a severe cold bias of the 2-m surface air temperature that persists for several hours or more. Concurrently, because of negligible downward heat transport from the atmosphere to the land, a warm temperature bias develops at the first model level. The authors test changes to the stable surface layer scheme that include introduction of a stability parameter constraint that prevents the land–atmosphere system from fully decoupling and modification to the roughness-length formulation. GFS sensitivity runs with these two changes demonstrate the ability of the proposed surface layer changes to reduce the excessive near-surface cooling in forecasts of 2-m surface air temperature. The proposed changes prevent both the collapse of turbulence in the stable surface layer over land and the possibility of numerical instability resulting from thermal decoupling between the atmosphere and the surface. The authors also execute and evaluate daily GFS 7-day test forecasts with the proposed changes spanning a one-month period in winter. The assessment reveals that the systematic deficiencies and substantial errors in GFS near-surface 2-m air temperature forecasts are considerably reduced, along with a notable reduction of temperature errors throughout the lower atmosphere and improvement of forecast skill scores for light and medium precipitation amounts.


2017 ◽  
Vol 8 ◽  
pp. 1961-1971 ◽  
Author(s):  
Patrícia M Amorim ◽  
Ana M Ferraria ◽  
Rogério Colaço ◽  
Luís C Branco ◽  
Benilde Saramago

In recent years, with the development of micro/nanoelectromechanical systems (MEMS/NEMS), the demand for efficient lubricants of silicon surfaces intensified. Although the use of ionic liquids (ILs) as additives to base oils in the lubrication of steel/steel or other types of metal/ metal tribological pairs has been investigated, the number of studies involving Si is very low. In this work, we tested imidazolium-based ILs as additives to the base oil polyethylene glycol (PEG) to lubricate Si surfaces. The friction coefficients were measured in a nanotribometer. The viscosity of the PEG + IL mixtures as well as their contact angles on the Si surface were measured. The topography and chemical composition of the substrates surfaces were determined with atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. Due to the hygroscopic properties of PEG, the first step was to assess the effect of the presence of water. Then, a series of ILs based on the cations 1-ethyl-3-methylimidazolium [EMIM], 1-butyl-3-methylimidazolium [BMIM], 1-ethyl-3-vinylimidazolium [EVIM], 1-(2-hydroxyethyl)-3-methylimidazolium [C2OHMIM] and 1-allyl-3-methylimidazolium [AMIM] combined with the anions dicyanamide [DCA], trifluoromethanesulfonate [TfO], and ethylsulfate [EtSO4] were added to dry PEG. All additives (2 wt %) led to a decrease in friction coefficient as well as an increase in viscosity (with the exception of [AMIM][TfO]) and improved the Si wettability. The additives based on the anion [EtSO4] exhibited the most promising tribological behavior, which was attributed to the strong interaction with the Si surface ensuring the formation of a stable surface layer, which hinders the contact between the sliding surfaces.


2012 ◽  
Vol 24 (2) ◽  
pp. 161-177 ◽  
Author(s):  
DUNCAN E. FARROW

A new framework for modelling the evolution of the thermal bar system in a lake is presented. The model assumes that the thermal bar is located between two regions: the deeper region, where spring warming leads to overturning of the entire water column, and the near shore shallower region, where a stable surface layer is established. In this model the thermal bar moves out slightly more quickly than predicted by a simple thermal balance. Also, the horizontal extent of the thermal bar region increases as it moves out from the shore.


2012 ◽  
Vol 51 (6) ◽  
pp. 1010-1025 ◽  
Author(s):  
Bianca Adler ◽  
C. David Whiteman ◽  
Sebastian W. Hoch ◽  
Manuela Lehner ◽  
Norbert Kalthoff

AbstractEpisodic nighttime intrusions of warm air, accompanied by strong winds, enter the enclosed near-circular Meteor Crater basin on clear, synoptically undisturbed nights. Data analysis is used to document these events and to determine their spatial and temporal characteristics, their effects on the atmospheric structure inside the crater, and their relationship to larger-scale flows and atmospheric stability. A conceptual model that is based on hydraulic flow theory is offered to explain warm-air-intrusion events at the crater. The intermittent warm-air-intrusion events were closely related to a stable surface layer and a mesoscale (~50 km) drainage flow on the inclined plain outside the crater and to a continuous shallow cold-air inflow that came over the upstream crater rim. Depending on the upstream conditions, the cold-air inflow at the crater rim deepened temporarily and warmer air from above the stable surface layer on the surrounding plain descended into the crater, as part of the flowing layer. The flow descended up to 140 m into the 170-m-deep crater and did not penetrate the approximately 30-m-deep crater-floor inversion. The intruding air, which was up to 5 K warmer than the crater atmosphere, did not extend into the center of the crater, where the nighttime near-isothermal layer in the ambient crater atmosphere remained largely undisturbed. New investigations are suggested to test the hypothesis that the warm-air intrusions are associated with hydraulic jumps.


Sign in / Sign up

Export Citation Format

Share Document