A Case Study of the Performance of Different Detrending Methods in Turbulent-Flux Estimation

2017 ◽  
Vol 164 (1) ◽  
pp. 19-37 ◽  
Author(s):  
Antonio Donateo ◽  
Daniela Cava ◽  
Daniele Contini
2021 ◽  
Vol 80 (3) ◽  
Author(s):  
Jorge Mendoza-Vega ◽  
Ingmar Messing ◽  
Víctor M. Ku-Quej ◽  
Luciano Pool-Novelo ◽  
Jesús Chi-Quej

2013 ◽  
Vol 10 (12) ◽  
pp. 8433-8443 ◽  
Author(s):  
D. J. Durden ◽  
C. J. Nappo ◽  
M. Y. Leclerc ◽  
H. F. Duarte ◽  
G. Zhang ◽  
...  

Abstract. The interpretation of flux measurements in nocturnal conditions is typically fraught with challenges. This paper reports on how the presence of wave-like disturbances in a time series, can lead to an overestimation of turbulence statistics, errors when calculating the stability parameter, erroneous estimation of the friction velocity u* used to screen flux data, and errors in turbulent flux calculations. Using time series of the pressure signal from a microbarograph, wave-like disturbances at an AmeriFlux site are identified. The wave-like disturbances are removed during the calculation of turbulence statistics and turbulent fluxes. Our findings suggest that filtering eddy-covariance data in the presence of wave-like events prevents both an~overestimation of turbulence statistics and errors in turbulent flux calculations. Results show that large-amplitude wave-like events, events surpassing three standard deviations, occurred on 18% of the nights considered in the present study. Remarkably, on flux towers located in a very stably stratified boundary-layer regime, the presence of a gravity wave can enhance turbulence statistics more than 50%. In addition, the presence of the disturbance modulates the calculated turbulent fluxes of CO2 resulting in erroneous turbulent flux calculations of the order of 10% depending on averaging time and pressure perturbation threshold criteria. Furthermore, the friction velocity u* was affected by the presence of the wave, and in at least one case, a 10% increase caused u* to exceed the arbitrary 0.25 m s−1 threshold used in many studies. This results in an unintended bias in the data selected for analysis in the flux calculations. The impact of different averaging periods was also examined and found to be variable specific. These early case study results provide an insight into errors introduced when calculating "purely" turbulent fluxes. These results could contribute to improving modeling efforts by providing more accurate inputs of both turbulent kinetic energy, and isolating the turbulent component of u* for flux selection in the stable nocturnal boundary layer.


2020 ◽  
Author(s):  
Belén Martí ◽  
Daniel Martínez-Villagrasa ◽  
Joan Cuxart

<p>Turbulent flux measurements require high frequency sampling in order to characterize appropriately all the variability scales of the atmosphere. A 3D sonic anemometer coupled with a gas detector allows for applying the eddy-covariance method which has become the standard. However, the high cost of this system often implies to look for alternative methods, specially when multiple stations are required. Turbulent fluxes can also be estimated through the flux-gradient similarity theory, requiring observations of mean quantities of (at least) air temperature and humidity at two levels and wind at one height. This approach is more sensitive to the disturbing influence of heterogeneous and complex surfaces and a comparison between methodologies is required under these conditions.<br><br>The data used in this study is part of the ALaiz EXperiment 2017-2018 (ALEX17). This campaign was the last within the New European Altas project. It had a duration of over a year with measurements in complex terrain. The location of the experiment is a valley bounded by two mountain ranges that rise 150 m north and over 600 m south. A central site in the centre of the valley was instrumented with a sodar-RASS, an 80-m tower, a surface energy balance (SEB) station with an eddy-covariance system and a surface-layer station (SLS) with the necessary measurements to estimate the turbulent fluxes. In addition, eight supplementary SLS were deployed along the longitudinal and transverse valley axes to characterize the surface layer variability within the valley.<br><br>This communication will present a comparison of the friction velocity and sensible heat flux obtained from both the eddy-covariance system and the flux-gradient method at the central site for a time series of 8 months. Friction velocity is highly comparable between methodologies with a correlation of 0.92 and a standard deviation of 0.05. The performance of the sensible heat flux estimation differs between stable and unstable cases, with a correlation of 0.70 and 0.89, respectively, after applying a quality control procedure. The poorer results obtained under stable conditions points out the need for alternative estimations of the sensible heat flux for these cases.</p>


2017 ◽  
Vol 76 (20) ◽  
Author(s):  
S. N. Kokh ◽  
E. V. Sokol ◽  
A. A. Dekterev ◽  
K. A. Kokh ◽  
T. M. Rashidov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document