Comprehensive immunohistochemical analysis of RET, BCAR1, and BCAR3 expression in patients with Luminal A and B breast cancer subtypes

Author(s):  
Ana Carolina Pavanelli ◽  
Flavia Rotea Mangone ◽  
Piriya Yoganathan ◽  
Simone Aparecida Bessa ◽  
Suely Nonogaki ◽  
...  
2020 ◽  
Author(s):  
Rong Jia ◽  
Zhongxian Li ◽  
Wei Liang ◽  
Yucheng Ji ◽  
Yujie Weng ◽  
...  

Abstract Background Breast cancer subtypes are statistically associated with prognosis. The search for markers of breast tumor heterogeneity and the development of precision medicine for patients are the current focuses of the field. Methods We used a bioinformatic approach to identify key disease-causing genes unique to the luminal A and basal-like subtypes of breast cancer. First, we retrieved gene expression data for luminal A breast cancer, basal-like breast cancer, and normal breast tissue samples from The Cancer Genome Atlas database. The differentially expressed genes unique to the 2 breast cancer subtypes were identified and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. We constructed protein–protein interaction networks of the differentially expressed genes. Finally, we analyzed the key modules of the networks, which we combined with survival data to identify the unique cancer genes associated with each breast cancer subtype. Results We identified 1,114 differentially expressed genes in luminal A breast cancer and 1,042 differentially expressed genes in basal-like breast cancer, of which the subtypes shared 500. We observed 614 and 542 differentially expressed genes unique to luminal A and basal-like breast cancer, respectively. Through enrichment analyses, protein–protein interaction network analysis, and module mining, we identified 8 key differentially expressed genes unique to each subtype. Analysis of the gene expression data in the context of the survival data revealed that high expression of NMUR1 and NCAM1 in luminal A breast cancer statistically correlated with poor prognosis, whereas the low expression levels of CDC7 , KIF18A , STIL , and CKS2 in basal-like breast cancer statistically correlated with poor prognosis. Conclusions NMUR1 and NCAM1 are novel key disease-causing genes for luminal A breast cancer, and STIL is a novel key disease-causing gene for basal-like breast cancer. These genes are potential targets for clinical treatment.


2019 ◽  
Vol 178 (2) ◽  
pp. 451-458 ◽  
Author(s):  
Giuseppe Viale ◽  
Amy E. Hanlon Newell ◽  
Espen Walker ◽  
Greg Harlow ◽  
Isaac Bai ◽  
...  

2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e11516-e11516
Author(s):  
A. Guerrero-Zotano ◽  
J. Gavila ◽  
M. A. Climent ◽  
M. J. Juan ◽  
V. Guillem ◽  
...  

e11516 Background: Gene expression profiling identifies several breast cancer subtypes with different chemosensitivity and outcome. We used immunohistochemistry surrogate markers to classify tumors according to known breast cancer subtypes and examined the relationship between neoadjuvant chemotherapy (NAC) response and long-term end points, including distant disease-free survival (DDFS) and overall survival (OS). Methods: Review of clinical and pathological data from 271 breast cancer patients treated in our institution with NAC between 1991–2008. Breast cancer subtypes were defined as follows: Luminal A: Estrogen receptor positive (ER+) and/or progesterone peceptor positive (PR+), human epidermal growth factor receptor 2-positive (Her-2+); Luminal B: ER+ and/or PR+,Her-2+; Basal: ER-,PR-,Her-2-;HER2: ER-,PR-,Her-2 +. ER and PR positive scored as positive if tumor cell nuclear staining was at least 2+. Her-2 scored as positive if test DAKO scored 3+ or FISH ratio Her-2/CEP-17>2.2. Results: 121 (45.8%) patients were classifed as Luminal A; 22 (8.1%) as Luminal B; 75 (27.7%) as Basal, and 50 (18.5%) as HER2. Most patients (63%) received NAC based on anthracyclines and taxanes. 36% Her-2+ patients were treated with NAC based on trastuzumab, and 43% received trastuzumab as adjuvant treatment. Response and outcome results are shown below (Table). Independently from subtype, only four patients out of 58 with pCR relapsed. Among patients who didn´t achieved pathologic complete response (pCR), basal and HER2 subtypes have the worst outcome (4 years SG 80% and 72% respectevely) compared with Luminal A (4 years SG: 94.7%), (log-rank p=0.009). Conclusions: Basal and HER2 tumor despite high chemosensitivity have worst long term outcome, particularly if pCR is not achieved after NAC. [Table: see text] No significant financial relationships to disclose.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 1041-1041
Author(s):  
Joaquina Martínez-Galan ◽  
Sandra Rios ◽  
Juan Ramon Delgado ◽  
Blanca Torres-Torres ◽  
Jesus Lopez-Peñalver ◽  
...  

1041 Background: Identification of gene expression-based breast cancer subtypes is considered a critical means of prognostication. Genetic mutations along with epigenetic alterations contribute to gene-expression changes occurring in breast cancer. However, the reproducibility of differential DNA methylation discoveries for cancer and the relationship between DNA methylation and aberrant gene expression have not been systematically analysed. The present study was undertaken to dissect the breast cancer methylome and to deliver specific epigenotypes associated with particular breast cancer subtypes. Methods: By using Real Time QMSPCR SYBR green we analyzed DNA methylation in regulatory regions of 107 pts with breast cancer and analyzed association with prognostics factor in triple negative breast cancer and methylation promoter ESR1, APC, E-Cadherin, Rar B and 14-3-3 sigma. Results: We identified novel subtype-specific epigenotypes that clearly demonstrate the differences in the methylation profiles of basal-like and human epidermal growth factor 2 (HER2)-overexpressing tumors. Of the cases, 37pts (40%) were Luminal A (LA), 32pts (33%) Luminal B (LB), 14pts (15%) Triple-negative (TN), and 9pts (10%) HER2+. DNA hypermethylation was highly inversely correlated with the down-regulation of gene expression. Methylation of this panel of promoter was found more frequently in triple negative and HER2 phenotype. ESR1 was preferably associated with TN(80%) and HER2+(60%) subtype. With a median follow up of 6 years, we found worse overall survival (OS) with more frequent ESR1 methylation gene(p>0.05), Luminal A;ESR1 Methylation OS at 5 years 81% vs 93% when was ESR1 Unmethylation. Luminal B;ESR1 Methylation 86% SG at 5 years vs 92% in Unmethylation ESR1. Triple negative;ESR1 Methylation SG at 5 years 75% vs 80% in unmethylation ESR1. HER2;ESR1 Methylation SG at 5 years was 66.7% vs 75% in unmethylation ESR1. Conclusions: Our results provide evidence that well-defined DNA methylation profiles enable breast cancer subtype prediction and support the utilization of this biomarker for prognostication and therapeutic stratification of patients with breast cancer.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Nicole J. Chew ◽  
Terry C. C. Lim Kam Sian ◽  
Elizabeth V. Nguyen ◽  
Sung-Young Shin ◽  
Jessica Yang ◽  
...  

Abstract Background Particular breast cancer subtypes pose a clinical challenge due to limited targeted therapeutic options and/or poor responses to the existing targeted therapies. While cell lines provide useful pre-clinical models, patient-derived xenografts (PDX) and organoids (PDO) provide significant advantages, including maintenance of genetic and phenotypic heterogeneity, 3D architecture and for PDX, tumor–stroma interactions. In this study, we applied an integrated multi-omic approach across panels of breast cancer PDXs and PDOs in order to identify candidate therapeutic targets, with a major focus on specific FGFRs. Methods MS-based phosphoproteomics, RNAseq, WES and Western blotting were used to characterize aberrantly activated protein kinases and effects of specific FGFR inhibitors. PDX and PDO were treated with the selective tyrosine kinase inhibitors AZD4547 (FGFR1-3) and BLU9931 (FGFR4). FGFR4 expression in cancer tissue samples and PDOs was assessed by immunohistochemistry. METABRIC and TCGA datasets were interrogated to identify specific FGFR alterations and their association with breast cancer subtype and patient survival. Results Phosphoproteomic profiling across 18 triple-negative breast cancers (TNBC) and 1 luminal B PDX revealed considerable heterogeneity in kinase activation, but 1/3 of PDX exhibited enhanced phosphorylation of FGFR1, FGFR2 or FGFR4. One TNBC PDX with high FGFR2 activation was exquisitely sensitive to AZD4547. Integrated ‘omic analysis revealed a novel FGFR2-SKI fusion that comprised the majority of FGFR2 joined to the C-terminal region of SKI containing the coiled-coil domains. High FGFR4 phosphorylation characterized a luminal B PDX model and treatment with BLU9931 significantly decreased tumor growth. Phosphoproteomic and transcriptomic analyses confirmed on-target action of the two anti-FGFR drugs and also revealed novel effects on the spliceosome, metabolism and extracellular matrix (AZD4547) and RIG-I-like and NOD-like receptor signaling (BLU9931). Interrogation of public datasets revealed FGFR2 amplification, fusion or mutation in TNBC and other breast cancer subtypes, while FGFR4 overexpression and amplification occurred in all breast cancer subtypes and were associated with poor prognosis. Characterization of a PDO panel identified a luminal A PDO with high FGFR4 expression that was sensitive to BLU9931 treatment, further highlighting FGFR4 as a potential therapeutic target. Conclusions This work highlights how patient-derived models of human breast cancer provide powerful platforms for therapeutic target identification and analysis of drug action, and also the potential of specific FGFRs, including FGFR4, as targets for precision treatment.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Galya Bigman ◽  
Sally Adebamowo ◽  
Clement Adebamowo ◽  
Owale Badejo ◽  
Elima Jedy-Agba ◽  
...  

Abstract Objectives To examine the association between leisure-time physical activity (LTPA) and breast cancer in Nigerian women. The hypothesis was that LTPA decreased breast cancer cases in Nigerian women. To examine the association between LTPA and estrogen receptor positive (ER+), triple negative breast cancer (TNBC+), Luminal A breast cancer in Nigerian women. The hypothesis was that LTPA decreased breast cancer subtypes in Nigerian women. Methods We enrolled 739 newly diagnosed primary invasive breast cancer and 739 age-matched controls in Nigeria from 01/2014 to 07/2016. This analysis is restricted to the 40% of cases for whom we have complete ER, TNBC, and Luminal-A data and their matched controls. We derived the average amount of time per week spent on LTPA over the past year using a modified Nurses’ Health Study II PA questionnaire. LTPA was calculated from the total metabolic equivalent (METs) assigned for each reported physical activity hour/week (i.e., walking, cycling, and dancing). We examined LTPA by comparing participants who attained the WHO physical activity recommendations of at least 150 minutes of moderate-intensity or/and 75 minutes of vigorous-intensity aerobic activity weekly with those who did not. We used conditional logistic regression to estimate the adjusted Odds Ratio (OR) of LTPA and overall as well as subtypes of breast cancer. Results The mean (SD) age of cases was 41.6 (9.1) and controls 43.9 (11.8) years. Women who attained the WHO physical activity recommendations had 43% decreased the risk of breast cancer (OR = 0.57, 95% CI:0.42–0.77) compared with those who did not, after controlling for demographic, anthropometric and fertility-related factors. LTPA was also associated with reduced risk of breast cancer subtypes by 41% for ER+, 59% for TNBC+and 59% for Luminal A. Conclusions Physical activity is associated with reduced risk of breast cancer overall and by subtypes in Nigerian women. Funding Sources Training Program in Nigeria for Non-Communicable Diseases Research (TRAPING NCD) grant number FIC/NIH D43TW009106 from the Fogarty International Centre. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Fogarty International Centre or the National Institutes of Health.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Rong Jia ◽  
Zhongxian Li ◽  
Wei Liang ◽  
Yucheng Ji ◽  
Yujie Weng ◽  
...  

Abstract Background Breast cancer subtypes are statistically associated with prognosis. The search for markers of breast tumor heterogeneity and the development of precision medicine for patients are the current focuses of the field. Methods We used a bioinformatic approach to identify key disease-causing genes unique to the luminal A and basal-like subtypes of breast cancer. First, we retrieved gene expression data for luminal A breast cancer, basal-like breast cancer, and normal breast tissue samples from The Cancer Genome Atlas database. The differentially expressed genes unique to the 2 breast cancer subtypes were identified and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. We constructed protein–protein interaction networks of the differentially expressed genes. Finally, we analyzed the key modules of the networks, which we combined with survival data to identify the unique cancer genes associated with each breast cancer subtype. Results We identified 1114 differentially expressed genes in luminal A breast cancer and 1042 differentially expressed genes in basal-like breast cancer, of which the subtypes shared 500. We observed 614 and 542 differentially expressed genes unique to luminal A and basal-like breast cancer, respectively. Through enrichment analyses, protein–protein interaction network analysis, and module mining, we identified 8 key differentially expressed genes unique to each subtype. Analysis of the gene expression data in the context of the survival data revealed that high expression of NMUR1 and NCAM1 in luminal A breast cancer statistically correlated with poor prognosis, whereas the low expression levels of CDC7, KIF18A, STIL, and CKS2 in basal-like breast cancer statistically correlated with poor prognosis. Conclusions NMUR1 and NCAM1 are novel key disease-causing genes for luminal A breast cancer, and STIL is a novel key disease-causing gene for basal-like breast cancer. These genes are potential targets for clinical treatment.


Sign in / Sign up

Export Citation Format

Share Document