Evaluation of efficiency of special-purity hydrogen production from products of steam conversion of methane and its close homologs in high-temperature converter–membrane equipment system using methane or carbon monoxide conversion catalyst

2013 ◽  
Vol 48 (9-10) ◽  
pp. 566-575
Author(s):  
A. B. Vandyshev ◽  
V. A. Kulikov
Author(s):  
Kavan Motazedi ◽  
Yaser Khojasteh Salkuyeh ◽  
Ian J. Laurenzi ◽  
Heather L. MacLean ◽  
Joule A. Bergerson

Author(s):  
Douglas P Harrison ◽  
Zhiyong Peng

Hydrogen is an increasingly important chemical raw material and a probable future primary energy carrier. In many current and anticipated applications the carbon monoxide impurity level must be reduced to low-ppmv levels to avoid poisoning catalysts in downstream processes. Methanation is currently used to remove carbon monoxide in petroleum refining operations while preferential oxidation (PROX) is being developed for carbon monoxide control in fuel cells. Both approaches add an additional step to the multi-step hydrogen production process, and both inevitably result in hydrogen loss. The sorption enhanced process for hydrogen production, in which steam-methane reforming, water-gas shift, and carbon dioxide removal reactions occur simultaneously in the presence of a nickel-based reforming catalyst and a calcium-based carbon dioxide sorbent, is capable of producing high purity hydrogen containing minimal carbon monoxide in a single processing step. The process also has the potential for producing pure CO2 that is suitable for subsequent use or sequestration during the sorbent regeneration step. The current research on sorption-enhanced production of low-carbon monoxide hydrogen is an extension of previous research in this laboratory that proved the feasibility of producing 95+% hydrogen (dry basis), but without concern for the carbon monoxide concentration. This paper describes sorption-enhanced reaction conditions – temperature, feed gas composition, and volumetric feed rate – required to produce 95+% hydrogen containing low carbon monoxide concentrations suitable for direct use in, for example, a proton exchange membrane fuel cell.


1983 ◽  
Vol 30 ◽  
Author(s):  
F. W. Giacobbe ◽  
D. W. Schmerling

ABSTRACTA unique and efficient plasma jet reactor has been developed and used to study the high temperature production of carbon monoxide from a reaction between powdered carbon and a pure carbon dioxide plasma. The plasma jet reactor was designed to allow the injection of powdered carbon above the arc discharge region rather than into the plasma flame below the arc discharge region. High yields of carbon monoxide, produced at relatively high efficiencies, were a direct result of this technique. The plasma jet was also designed to enable rapid changing and testing of various anode insertsAverage yields of carbon monoxide in the product gases were as high as 80–87% in selected experimental trials. Carbon monoxide was produced at rates exceeding 15,000 1/hr (at STP) with a power expenditure of 52 Kw.


Sign in / Sign up

Export Citation Format

Share Document