Design and use of an Efficient Plasma Jet Reactor for High Temperature Gas/Solid Reactions

1983 ◽  
Vol 30 ◽  
Author(s):  
F. W. Giacobbe ◽  
D. W. Schmerling

ABSTRACTA unique and efficient plasma jet reactor has been developed and used to study the high temperature production of carbon monoxide from a reaction between powdered carbon and a pure carbon dioxide plasma. The plasma jet reactor was designed to allow the injection of powdered carbon above the arc discharge region rather than into the plasma flame below the arc discharge region. High yields of carbon monoxide, produced at relatively high efficiencies, were a direct result of this technique. The plasma jet was also designed to enable rapid changing and testing of various anode insertsAverage yields of carbon monoxide in the product gases were as high as 80–87% in selected experimental trials. Carbon monoxide was produced at rates exceeding 15,000 1/hr (at STP) with a power expenditure of 52 Kw.

1998 ◽  
Vol 13 (9) ◽  
pp. 2438-2444 ◽  
Author(s):  
Jun Jiao ◽  
Supapan Seraphin

The preparation and structural characterization of carbon nanoclusters of different morphologies produced by three different methods and under a variety of conditions is reported. In a comparative manner, the growth phenomena and structural properties of carbon nanoclusters are investigated as synthesized by (a) the high temperature (˜3000 °C) and high carbon-content process of the conventional arc-discharge, (b) the high temperature but low carbon-content process of the modified arc-discharge, and finally (c) the relatively low temperature (˜500 °C) process of Ni catalytic disproportionation of carbon monoxide.


Author(s):  
Claire Douat ◽  
Pablo Escot Bocanegra ◽  
Sébastien Dozias ◽  
Éric Robert ◽  
Roberto Motterlini

1991 ◽  
Author(s):  
Sergei N. Belov ◽  
Evgeny M. Golubev ◽  
Elena G. Vinokurova
Keyword(s):  

Author(s):  
M. Kh. Gadzhiev ◽  
A. S. Tyuftyaev ◽  
Yu. M. Kulikov ◽  
M. A. Sargsyan ◽  
D. I. Yusupov ◽  
...  

Low-temperature plasma is used in metallurgy for steel alloying by nitrogen, deoxidization of magnetic alloys, obtaining of steels with particularly low carbon content, metal cleaning of nonmetallic inclusions, desulfurization and other refining processes. The wide application of those technologies is restrained by absence of reliable generators of low-temperature plasma (GLP) with sufficient resource of continuous operation. As a result of studies, a universal generator of high-enthalpy plasma jet of various working gases was created. The generator has expanding channel of the output electrode with an efficiency of ~60 % for argon working gas and ~80% for nitrogen and air. It was shown that the developed generator of low-temperature plasma ensures formation of a weakly diverging (2α = 12°) plasma jet with a diameter D = 5–12 mm, an enthalpy of 5–50 kJ/g and a mass average temperature of 5–10 kK, at a full electric power of the arc discharge of 5–50 kW and a plasma-forming gas flow rate of 1–3 g/s. Results of the study of propane additions to the plasma-forming gas effect on the state of cathodes with inserts made of pure tungsten, lanthanum tungsten, and hafnium presented. It was shown that a small propane addition (1%) to the plasma-forming gas, results in reducing effect of the insert material. Study of the GLP operation at arc current 100A with addition to the working gas nitrogen maximum possible volume of propane, which don’t disturb stability of arc showed that for the developed plasma generator at the nitrogen flow rate ~0,45 g/s, the propane flow rate was ~0,33 g/s (not more than ~73 % of the plasma-forming gas). The created high-resource GLP with changeable electrodes enables to obtain at the exit a high-enthalpy plasma flow of various gases (argon, nitrogen, air) and can be a prototype of more powerful plasmotrons of various technological application, in particular for plasma metallurgy.


Author(s):  
Pierre Carabin ◽  
Gillian Holcroft

Plasma Resource Recovery (PRR) is a revolutionary technology that can treat virtually any type of waste by combining gasification with vitrification. Vitrification produces inert slag that can be used as a construction material. Gasification produces a fuel gas containing carbon monoxide (CO) and hydrogen (H2), used for cogeneration of electricity and steam. The plasma fired eductor which is the core technology of the PRR system is presently being used commercially on a cruise ship at a scale of 5 TPD. The capabilities of the PRR technology have been demonstrated in a pilot plant, at a rate of up to 2 TPD of various types of waste. Because of the high intensity of the plasma flame and the reduced amounts of gases produced in a gasification system, compared to traditional combustion systems, the PRR system is typically very compact. As such, the PRR technology opens the door for a decentralized, small scale approach to waste management.


2018 ◽  
Vol 67 (5) ◽  
pp. 055201
Author(s):  
Guo Heng ◽  
Zhang Xiao-Ning ◽  
Nie Qiu-Yue ◽  
Li He-Ping ◽  
Zeng Shi ◽  
...  

2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000167-000173
Author(s):  
R. Singh ◽  
S. Creamer ◽  
E. Lieser ◽  
S. Jeliazkov ◽  
S. Sundaresan

Through a systematic study, Silicon Carbide Gate Turn Off (GTO) Thyristors with record performance are demonstrated. Several Anode-Gate interdigitation schemes (raster, hex and involute) were explored to investigate their effect on the static as well as switching characteristics. An optimized edge-termination was employed that resulted in the achievement of near-theoretical forward blocking voltages (>8.1kV), and high yields (>60% on 8mm×8mm) on GTO Thyristors with 60μm/5×1014 cm−3 voltage-blocking epitaxial layers. A low differential specific on-resistance of 2.55 mΩ-cm2, and low on-state voltage drop were measured at 500 A/cm2. High Temperature forward I-V and reverse I-V characteristics show extremely stable performance with temperature, in contrast to state-of-the-art Si GTO Thyristors. Turn-on transient characteristics show a stable delay time of about 400 nano-seconds, and a rise-time that decreases with increasing temperature. Detailed high temperature turn-off measurements conducted using Anode-Switched mode was used to extract the value of minority carrier lifetimes as a function of temperature for the first time.


Sign in / Sign up

Export Citation Format

Share Document