In vitro proliferation and osteogenic differentiation of endometrial stem cells and dental pulp stem cells

2017 ◽  
Vol 18 (2) ◽  
pp. 239-247 ◽  
Author(s):  
Fahimeh Sadat Tabatabaei ◽  
Maryam Torshabi
2015 ◽  
Vol 21 (3-4) ◽  
pp. 729-739 ◽  
Author(s):  
Jonas Jensen ◽  
David Christian Evar Kraft ◽  
Helle Lysdahl ◽  
Casper Bindzus Foldager ◽  
Muwan Chen ◽  
...  

2015 ◽  
Vol 11 (1) ◽  
Author(s):  
Casiano Del Angel-Mosqueda ◽  
Yolanda Gutiérrez-Puente ◽  
Ada Pricila López-Lozano ◽  
Ricardo Emmanuel Romero-Zavaleta ◽  
Andrés Mendiola-Jiménez ◽  
...  

2020 ◽  
Vol 3 (3) ◽  
pp. 267-278
Author(s):  
Alan Jesus ◽  
Adriano Jesus ◽  
Flávia Lima ◽  
Luiz Freitas ◽  
Cássio Meira ◽  
...  

Autogenous bone grafting is needed in some bone tissue defects; however, it causes secondary surgical wounds and morbidity. Tissue bioengineering may be an alternative approach for bone regeneration. Here we investigated the osteogenic potential of dental pulp stem cells from deciduous teeth (DPSC) in association with a Ricinus bone compound (RBC) in a model of bone defect. The influence of the biomaterial RBC on the proliferation and osteogenic differentiation of DPSC was assessed in vitro by MTT metabolism and alizarin red staining, respectively. The morphologic analysis was performed using the optic and scanning electron (SEM) microscopies. For the in vivo study, 54 Wistar rats submitted to calvarial defects were filled with RBC or RBC+DPSC. A control group had the defects filled only with blood clots. Analyses were performed 15, 30 and 60 days after treatment using digital radiography, optical microscopy, SEM and chemical analysis by electron dispersive spectroscopy. The Ricinus bone compound (RBC) did not inhibit the osteogenic differentiation in vitro. No spontaneous regeneration was observed in the control group. The area of the calvarial defect of the RBC+DPSC group showed greater radiopacity on day 15. The RBC presented no reabsorption, was biocompatible and showed osteointegration, working as a mechanical filling. Only sparse ossification areas were found and those were larger and more developed on the RBC+DPSC group when compared to animals treated only with RBC. RBC in association with DPSC is a promising combination for applications in bone regeneration.  


2020 ◽  
Vol 14 (01) ◽  
pp. 123-127
Author(s):  
Ketut Suardita ◽  
Ira Arundina ◽  
Udijanto Tedjosasongko ◽  
Anita Yuliati ◽  
Harry Huiz Peeters ◽  
...  

Abstract Objective Dental pulp stem cells (DPSCs) can be used as a component in the formation of regenerative dentine during direct pulp capping therapy. Concanavalin A (ConA) is a type of lectin with a molecular weight of 26 kDa derived from the Canavalia ensiformis plant. Lectins possess strong proliferation and differentiation abilities in various animal cells including lymphocytes, osteoblasts, and chondrocytes. The aim of study was to determine the effect of ConA on the proliferation and osteogenic differentiation of DPSCs in vitro. Materials and Methods In this in vitro study, DPSCs were isolated from third molars before ConA induction was performed at concentrations of 5 and 10 μg/mL. The proliferation assay was determined by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Osteogenic differentiation was determined by means of mineralization. Statistical Analysis Data were analyzed using analysis of variance and a Student’s t-test. The p-value was set at 0.05. Results The addition of 5 and 10 µg/mL of ConA to DPSCs can significantly increase the proliferation and osteogenic differentiation of DPSCs (p ≤0.05). Conclusion ConA can increase the proliferation and osteogenic differentiation of DPSCs.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e50542 ◽  
Author(s):  
Alessandra Pisciotta ◽  
Massimo Riccio ◽  
Gianluca Carnevale ◽  
Francesca Beretti ◽  
Lara Gibellini ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiao Cen ◽  
Xuefeng Pan ◽  
Bo Zhang ◽  
Wei Huang ◽  
Fang Pei ◽  
...  

Abstract Background Human dental pulp stem cells (hDPSCs) are the preferable choice of seed cells for craniomaxillofacial bone tissue regeneration. As a member of the miR-17-92 cluster, miR-20a-5p functions as an important regulator during bone remodeling. This study aimed to investigate the roles and mechanisms of miR-20a-5p during osteogenesis of hDPSCs. Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to determine the expression of miR-20a-5p during osteogenesis of hDPSCs. We interfered with the expression of miR-20a-5p in hDPSCs to clarify the function of miR-20a-5p on osteogenesis both in vitro and vivo. Direct bind sites between miR-20a-5p and BAMBI were confirmed by dual-luciferase reporter assay, and the underlying mechanisms were investigated with cell co-transfections. Results The expression of miR-20a-5p was showed to be upregulated during osteogenesis of hDPSCs. Inhibition of miR-20a-5p could weaken the intensity of ALP/ARS staining and downregulate the expression of mRNAs and proteins of osteogenic markers, while overexpression of miR-20a-5p could enhance the intensity of ALP/ARS staining and the expression of osteogenic markers. Both micro-CT reconstruction images and histological results showed that miR-20a-5p could promote the regeneration of calvarial defects. miR-20a-5p directly targeted bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), and the latter one was an inhibitor of hDPSC osteogenesis. Silencing BAMBI partially reversed the suppression effect of miR-20a-5p knockdown on osteogenesis. Phosphorylation of Smad5 and p38 was decreased when miR-20a-5p was silenced, whereas p-Smad5 and p-p38 were upregulated when miR-20a-5p was overexpressed or BAMBI was silenced. Conclusions It is demonstrated that miR-20a-5p functioned as a regulator of BAMBI to activate the phosphorylation of Smad5 and p38 during osteogenic differentiation of hDPSCs.


2021 ◽  
Vol 22 (2) ◽  
pp. 865
Author(s):  
Rosanna Di Tinco ◽  
Giulia Bertani ◽  
Alessandra Pisciotta ◽  
Laura Bertoni ◽  
Jessika Bertacchini ◽  
...  

Dental implants are one of the most frequently used treatment options for tooth replacement, and titanium is the metal of choice due to its demonstrated superiority in resisting corrosion, lack of allergic reactions and mechanical strength. Surface roughness of titanium implants favors the osseointegration process; nevertheless, its topography may provide a suitable substrate for bacterial biofilm deposition, causing peri-implantitis and leading to implant failure. Subgingival prophylaxis treatments with cleansing powders aimed to remove the bacterial accumulation are under investigation. Two different air-polishing powders—glycine and tagatose—were assayed for their cleaning and antimicrobial potential against a Pseudomonas biofilm and for their effects on human dental pulp stem cells (hDPSCs), seeded on sandblasted titanium disks. Immunofluorescence analyses were carried out to evaluate cell adhesion, proliferation, stemness and osteogenic differentiation. The results demonstrate that both the powders have a great in vitro cleaning potential in the early period and do not show any negative effects during hDPSCs osteogenic differentiation process, suggesting their suitability for enhancing the biocompatibility of titanium implants. Our data suggest that the evaluated cleansing systems reduce microbial contamination and allow us to propose tagatose as an adequate alternative to the gold standard glycine for the air-polishing prophylaxis treatment.


Sign in / Sign up

Export Citation Format

Share Document