Base activation of persulfate: an effective pretreatment method to enhance glucose production from lignocellulosic biomass

Cellulose ◽  
2021 ◽  
Vol 28 (7) ◽  
pp. 4039-4051
Author(s):  
Jirui Yang ◽  
Xiaoqi Wang ◽  
Feng Shen ◽  
Xinhua Qi
2014 ◽  
Vol 31 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Yuzhi Kang ◽  
Matthew J. Realff ◽  
Minjeong Sohn ◽  
Jay H. Lee ◽  
Andreas S. Bommarius

2017 ◽  
Vol 235 ◽  
pp. 301-308 ◽  
Author(s):  
Ruly Terán Hilares ◽  
Gabriela Faria de Almeida ◽  
Muhammad Ajaz Ahmed ◽  
Felipe A.F. Antunes ◽  
Silvio Silvério da Silva ◽  
...  

BioResources ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 1379-1389
Author(s):  
Yingnan Cao ◽  
Juan Wang ◽  
Qunhui Wang ◽  
Jianguo Liu ◽  
Tingxi Liu ◽  
...  

Efficient pretreatment and enzymatic hydrolysis is critical to achieve effective utilization of lignocellulosic biomass. In this study, the cellulase composition for lignocellulosic biomass hydrolysis was strategically optimized to improve the efficiency of vinasse saccharification and thus enhance L-lactic acid production. The results showed that the supplementation of β-glycosidase (BG) increased sugar production, and the glucose concentration exceeded cellobiose concentration after 48 h of hydrolysis. These results suggested that the addition of BG aided the hydrolysis of cellobiose and reduced the inhibitory effects caused by sugar accumulation. After 72 h to 96 h of hydrolysis, the BG supplementation improved cellobiose and glucose production by 25.7% and 27.4%, respectively. The effect of BG supplementation on L-lactic acid production during the fermentation of microwave-alkali pretreated vinasse was also investigated. Here, the L-lactic acid production from simultaneous saccharification and fermentation (SSF) with the addition of BG was 20.8% higher than that without BG addition, and was also 37.0% higher than production from separate hydrolysis and fermentation with BG addition. These results indicated the utilization efficiency of lignocellulosic biomass for L-lactic acid production could be enhanced by supplementation of BG in SSF.


2019 ◽  
Vol 11 (7) ◽  
pp. 3381-3396 ◽  
Author(s):  
Xu Yang ◽  
Zhiping Zhang ◽  
Lili Song ◽  
Guanglu Wang ◽  
Jingnan Zhang

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4195
Author(s):  
Mattia Gelosia ◽  
Alessandro Bertini ◽  
Marco Barbanera ◽  
Tommaso Giannoni ◽  
Andrea Nicolini ◽  
...  

Lignocellulosic biomass is a non-edible feedstock that can be used in integrated biorefinery for the production of biochemicals and biofuel. Among lignocellulosic biomass, Cynara cardunculus L. (cardoon) is a promising crop thanks to its low water and fertilizer demand. Organosolv is a chemical treatment that uses numerous organic or aqueous solvent mixtures, and a small amount of acid catalyst, in order to solubilize the lignin and hemicellulose fractions, making the cellulose accessible to hydrolytic enzymes. Lignocellulosic residues of cardoon underwent a two-step treatment process to obtain fermentable glucose. In the first step, the milled biomass was subjected to microwave-assisted extraction using an acidified γ-valerolactone (GVL)/water mixture, yielding a solid cellulose pulp. In the second step, the pre-treated material was hydrolyzed by cellulolytic enzymes to glucose. The first step was optimized by means of a two-level full factorial design. The investigated factors were process temperature, acid catalyst concentration, and GVL/water ratio. A glucose production equal to 30.17 g per 100 g of raw material (89% of the maximum theoretical yield) was achieved after conducting the first step at 150 °C using an acidified water solution (1.96% H2SO4w/w).


BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 7834-7840 ◽  
Author(s):  
Jungwoo Yang ◽  
Ji Eun Kim ◽  
Jae Kyun Kim ◽  
Sung ho Lee ◽  
Ju-Hyun Yu ◽  
...  

The performance of cellulase in the enzymatic saccharification of lignocellulose depends on the characteristics of lignocellulosic biomass feedstocks and the pretreatment method used. Efficient hydrolysis of specifically pretreated lignocellulose necessitates the knowledge of the characteristics of the optimal commercial cellulases. In this study, commercial cellulase preparations (Accellerase™ 1000, Accellerase® 1500, and Spezyme® CP from DuPont and Cellic® CTec2 from Novozymes) were evaluated for their hydrolysis efficiency of hydrothermally pretreated empty fruit bunches (EFBs). The highest glucose yields of 91.3% and 84.7% were achieved for 30 FPU of Cellic® CTec2/g glucan with and without Cellic® HTec2, respectively. Of the four cellulases tested, Cellic® CTec2, which showed the highest cellobiohydrolase, xylanase, and β-glucosidase activities, showed the highest glucose yield in the enzymatic hydrolysis of hydrothermally pretreated EFBs. The results of this study are valuable for those who plan to enzymatically hydrolyze hydrothermally pretreated EFBs.


2013 ◽  
Vol 777 ◽  
pp. 173-177
Author(s):  
Xin Yuan Liu ◽  
Ru Ying Li ◽  
Min Ji ◽  
Di Liu ◽  
Yan Ming Cai

As lignocellulosic biomass, the cornstalk should be pretreated before anaerobic fermentation for hydrogen production. In this study, HCl, NaOH and enzyme were employed for cornstalk pretreatment and the products were used for anaerobic biohydrogen production. Hydrogen yield and hydrogen production rate were investigated to optimize cornstalk pretreatment method. In addition, the economic effect and energy consumption were also considered to evaluate the pretreatment methods. The optimum cornstalk pretreatment method was soaking in 2% NaOH at 50°C for 48h with a hydrogen yield of 55.0 ml/g-TS and a hydrogen production rate of 6.5 ml/h/g-VS in anaerobic hydrogen production.


Sign in / Sign up

Export Citation Format

Share Document