glucose yield
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 57)

H-INDEX

13
(FIVE YEARS 4)

2022 ◽  
Vol 1048 ◽  
pp. 451-458
Author(s):  
Megawati ◽  
Astrilia Damayanti ◽  
Radenrara Dewi Artanti Putri ◽  
Zuhriyan Ash Shiddieqy Bahlawan ◽  
Astika Arum Dwi Mastuti ◽  
...  

S. platensis is a microalga that contains carbohydrate composition of 30.21% which makes it potential to be used as raw material for ethanol production. Hydrolysis of S. platensis is the first step for converting its carbohydrates into monosaccharides. The second step is fermentation of monosaccharides into ethanol. This research aims to study the effect of temperature and microalgae concentration on the hydrolysis of S. platensis using sulfuric acid as catalyst. This research was conducted using 300 mL sulfuric acid of 2 mol/L, hydrolysis temperatures of 70, 80 and 90 °C, and microalgae concentrations of 20, 26.7, and 33.3 g/L. The effect of temperature is significant in the hydrolysis of S. platensis using sulfuric acid. At microalgae concentration of 20 g/L and hydrolysis time of 35 minutes, the higher the temperatures (70, 80, and 90 °C), the more the glucose yields would be (8.9, 13.5, and 22.9%). This temperature effect got stronger when the hydrolysis was running for 15 minutes. Every time the hydrolysis temperature increased by 10 °C, the glucose yield increased by 13.0% at microalgae concentration of 33.3 g/L. At temperature of 90 °C and time of 35 minutes, the higher the microalgae concentrations (20, 26.7, and 33.3 g/L), the higher the glucose yields would be (25.5, 27.7, and 28.2%). The highest glucose concentration obtained was 2.82 g/L at microalgae concentration of 33.3 g/L, temperature of 90 °C, and time of 35 minutes.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 288
Author(s):  
Saleha Al-Mardeai ◽  
Emad Elnajjar ◽  
Raed Hashaikeh ◽  
Boguslaw Kruczek ◽  
Bart Van der Bruggen ◽  
...  

Hydrolysis is the heart of the lignocellulose-to-bioethanol conversion process. Using enzymes to catalyze the hydrolysis represents a more environmentally friendly pathway compared to other techniques. However, for the process to be economically feasible, solving the product inhibition problem and enhancing enzyme reusability are essential. Prior research demonstrated that a flat-sheet membrane bioreactor (MBR), using an inverted dead-end filtration system, could achieve 86.7% glucose yield from purified cellulose in 6 h. In this study, the effectiveness of flat-sheet versus radial-flow MBR designs was assessed using real, complex lignocellulose biomass, namely date seeds (DSs). The tubular radial-flow MBR used here had more than a 10-fold higher membrane surface area than the flat-sheet MBR design. With simultaneous product separation using the flat-sheet inverted dead-end filtration MBR, a glucose yield of 10.8% from pretreated DSs was achieved within 8 h of reaction, which was three times higher than the yield without product separation, which was only 3.5% within the same time and under the same conditions. The superiority of the tubular radial-flow MBR to hydrolyze pretreated DSs was confirmed with a glucose yield of 60% within 8 h. The promising results obtained by the novel tubular MBR could pave the way for an economic lignocellulose-to-bioethanol process.


2021 ◽  
Vol 939 (1) ◽  
pp. 012006
Author(s):  
Zh Makhatov ◽  
Zh Yelemanova ◽  
R Aitkulova ◽  
Z Narymbayeva ◽  
A Dairabayeva ◽  
...  

Abstract The aim of the study is to select reaction conditions for hydrolysis of wheat straw with dilute sulfuric acid for maximum xylose extraction under mild conditions (at atmospheric pressure and temperature of 100°C). The authors found that maximum glucose yield (72.4-77.1 weight % of the initial content of hemicelluloses in wheat straw) is achieved at a concentration of H2SO4 2-3 weight % and the hydrolysis process duration of 5 hours. Analysis of the obtained hydrolysates showed that they contain cellulose (56.8-70.4 weight %), lignin (19.8-28.8 weight %) and hemicelluloses (2.8-15.3 weight %).


2021 ◽  
Vol 939 (1) ◽  
pp. 012005
Author(s):  
Zh Makhatov ◽  
N Alibayev ◽  
Z Konarbayeva ◽  
B Makhatov ◽  
A Makhatova ◽  
...  

Abstract The purpose of this study is to develop a technology for enzymatic processing for depolymerization of polysaccharides in wheat straw to obtain the maximum yield of glucose and sorbitol. Cellulolytic enzymes endo-1,4-β-glucanase (EC 3.2.1.4) and cellobiose (1,3-β-glucosidase) (CF 3.2.1.21) were isolated and studied in local strains Tr. viride 121, which are grown under deep cultivation conditions. A technology has been developed for obtaining a complex preparation “Cellozyme G20x” with a high yield and specific activity of cellulase, xylanase, β-glucanase and pectinase, and a scheme for purification from cellulases by precipitation, ultrafiltration, and freeze drying is not inferior in efficiency to commercial preparations. The physicochemical properties of the preparation “Cellozyme G20x” have been studied, the optimal parameters of the action and stability of the enzyme preparation have been established. The efficiency of Cellozyme G20x for hydrolysis of straw polysaccharides was 35-40% in terms of glucose yield.


Author(s):  
Onoh Ikechukwu Maxwell ◽  
Anho Lawrence Oghenerivwe ◽  
Egwuagu Onyekachi

The aim of this work is to study the acid and enzymatic hydrolysis of cocoyam peels using HCl, H2S04 acids and cellulase enzyme. The cellulase was secreted from Aspergillus Niger (A. niger) fungi. The proximate analysis of the substrate showed that cocoyam peel is a lignocellulosic biomass with a cellulose composition of 48%. The effect of the process parameters (time, temperature, acid concentration and pH) on the yield of glucose in acid and enzymatic hydrolysis of the cocoyam peel was respectively investigated. Maximum glucose yield of 44.5% was obtained after 3 days of enzymatic hydrolysis at 30°C and pH 5. The HCl acid hydrolysis showed a maximum glucose yield of 27.3% at 70°C, 5% HCl after 180 minutes. The glucose yield in H2S04 hydrolysis was relatively lower than that of the HCl with a maximum yield of 26.5% at 70°C, 5% H2SO4 after 180 minutes. In addition to, the functional groups present in the glucose synthesized from cocoyam ground peels and the standard glucose were evaluated using Fourier Transformed Infrared (FTIR). The FTIR results showed similarities in the functional groups present in both sugars. Cocoyam peel can be used for the production of glucose and further fermentative process to produce ethanol.


Author(s):  
Onoh Ikechukwu Maxwell ◽  
Anho Lawrence Oghenerivwe ◽  
Egwuagu Onyekachi

The aim of this work is to study the acid and enzymatic hydrolysis of water yam peels using HCl, H2S04 acids and cellulase enzyme. The cellulase was secreted from Aspergillus niger (A.niger). The proximate analysis of the substrate showed that water yam peel is a lignocellulosic biomass with a cellulose composition of 48%. The effect of the process parameters (time, temperature, acid concentration and pH) on the yield of glucose in acid and enzymatic hydrolysis of the water yam peel was respectively investigated. Maximum glucose yield of 44.5% was obtained after 3 days of enzymatic hydrolysis at 30°C and pH 5. The HCl acid hydrolysis showed a maximum glucose yield of 27.3% at 70°C, 5% HCl after 180 minutes. The glucose yield in H2S04 hydrolysis was relatively lower than that of the HCl with a maximum yield of 26.5% at 70°C, 5% H2SO4 after 180 minutes. In addition to, the functional groups present in the glucose synthesized from ground water yam peels and the standard glucose were evaluated using Fourier Transformed Infrared (FTIR) Spectroscopy. The FTIR results showed similarities in the functional groups present in both sugars. Yam peel can be used for the production of glucose and further fermentative process to produce ethanol.


2021 ◽  
Vol 50 (10) ◽  
pp. 2977-2991
Author(s):  
Nurfatimah Mohd Thani ◽  
Siti Mazlina Mustapa Kamal ◽  
Farah Saleena Taip ◽  
Alifdalino Sulaiman ◽  
Rozita Omar

This study evaluates the process conditions, (enzyme concentration (120-1200 U/g substrate), temperature (30-60 °C), and pH (3-9)) of enzymatic hydrolysis (EH) for sugar recovery from leftover croissants (LC) and leftover doughnut (LD), and characterizing its residue and hydrolysate. The highest sugar yield recovered from LC was 574.21 ± 0.74 mg/g (840 U/g substrate, 49 °C and pH 3) and for LD was 460.53 ± 0.74 mg/g (1176 U/g substrate, 47 °C and pH 3). The highest fructose and glucose yield for LC and LD were 14.47±0.73 mg/g and 11.84±0.21 mg/g, and 13.26±0.63 mg/g and 10.34±0.11 mg/g, respectively. Morphology analysis (SEM) showed that the structure of LC and LD had changes in its starch granules that indicates hydrolysis process occurrence. The presence of monosaccharides and oligosaccharides were detected from FTIR. HMF was also detected from sugar degradation due to EH, (0.043 ± 0.0334 mg/g for LC) and (0.023 ± 0.0124 mg/g for LD).


2021 ◽  
Vol 14 (2) ◽  
pp. 1-5
Author(s):  
Safiya Yakubu ◽  
Ya’u Anas ◽  
Halima Ibrahim ◽  
Fati Ahmed Abdullahi ◽  
Aisha Sani Dalhatu

The scarcity and high price associated with fossil fuel has urged countries to research resources for alternative energy sources. Biofuels like bioethanol produced from lignocellulosic biomass (corn cob) were considered potential alternative. Cellulose composition from isolated cell wall material of corn cobs was investigated under two different pre-treatments using H2SO4 and NH4OH at varying concentrations of 5%, 10%, 20%, 30% and 40%. Cell wall not treated acted as control. Colorimetric anthrone-assay followed by absorbance reading at 625nm revealed that glucose is present in reasonable amount in corn cob. The analysis of variance (ANOVA) indicated significant differences among pre-treated compared to untreated (Control) corn cob samples at p≤0.05. Acid pre-treatment showed better glucose yield compared to alkali pre-treatment with results revealing 20% (19.37µg/ml) H2SO4 to be the optimal concentration producing highest glucose yield. The study reveals the potential of corn cob as a lignocellulosic feed stock for biofuel production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sivan Pramod ◽  
Madhavi Latha Gandla ◽  
Marta Derba-Maceluch ◽  
Leif J. Jönsson ◽  
Ewa J. Mellerowicz ◽  
...  

High acetylation of xylan in hardwoods decreases their value as biorefinery feedstocks. To counter this problem, we have constitutively suppressed RWA genes encoding acetyl-CoA transporters using the 35S promoter, or constitutively and wood-specifically (using the WP promoter) expressed fungal acetyl xylan esterases of families CE1 (AnAXE1) and CE5 (HjAXE), to reduce acetylation in hybrid aspen. All these transformations improved the saccharification of wood from greenhouse-grown trees. Here, we describe the chemical properties and saccharification potential of the resulting lines grown in a five-year field trial, and one type of them (WP:AnAXE1) in greenhouse conditions. Chemically, the lignocellulose of the field- and greenhouse-field-grown plants slightly differed, but the reductions in acetylation and saccharification improvement of engineered trees were largely maintained in the field. The main novel phenotypic observation in the field was higher lignification in lines with the WP promoter than those with the 35S promoter. Following growth in the field, saccharification glucose yields were higher from most transformed lines than from wild-type (WT) plants with no pretreatment, but there was no improvement in saccharification with acid pretreatment. Thus, acid pretreatment removes most recalcitrance caused by acetylation. We found a complex relationship between acetylation and glucose yields in saccharification without pretreatment, suggesting that other variables, for example, the acetylation pattern, affect recalcitrance. Bigger gains in glucose yields were observed in lines with the 35S promoter than in those with the WP promoter, possibly due to their lower lignin content. However, better lignocellulose saccharification of these lines was offset by a growth penalty and their glucose yield per tree was lower. In a comparison of the best lines with each construct, WP:AnAXE1 provided the highest glucose yield per tree from saccharification, with and without pretreatment, WP:HjAXE yields were similar to those of WT plants, and yields of lines with other constructs were lower. These results show that lignocellulose properties of field-grown trees can be improved by reducing cell wall acetylation using various approaches, but some affect productivity in the field. Thus, better understanding of molecular and physiological consequences of deacetylation is needed to obtain quantitatively better results.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiao Fu ◽  
Jialong Zhang ◽  
Xiangyu Gu ◽  
Hongbo Yu ◽  
Shulin Chen

Abstract Background The efficiency of biological systems as an option for pretreating lignocellulosic biomass has to be improved to make the process practical. Fungal treatment with manganese (Mn) addition for improving lignocellulosic biomass fractionation and enzyme accessibility were investigated in this study. The broad-spectrum effect was tested on two different types of feedstocks with three fungal species. Since the physicochemical and structural properties of biomass were the main changes caused by fungal degradation, detailed characterization of biomass structural features was conducted to understand the mechanism of Mn-enhanced biomass saccharification. Results The glucose yields of fungal-treated poplar and wheat straw increased by 2.97- and 5.71-fold, respectively, after Mn addition. Particularly, over 90% of glucose yield was achieved in Mn-assisted Pleurotus ostreatus-treated wheat straw. A comparison study using pyrolysis gas chromatography mass spectrometry (Py-GC/MS) and two-dimensional 1H–13C heteronuclear single quantum coherence (2D HSQC) nuclear magnetic resonance (NMR) spectroscopy was conducted to elucidate the role of Mn addition on fungal disruption of the cross-linked structure of whole plant cell wall. The increased Cα-oxidized products was consistent with the enhanced cleavage of the major β-O-4 ether linkages in poplar and wheat straw lignin or in the wheat straw lignin–carbohydrate complexes (LCCs), which led to the reduced condensation degree in lignin and decreased lignin content in Mn-assisted fungal-treated biomass. The correlation analysis and principal component analysis (PCA) further demonstrated that Mn addition to fungal treatment enhanced bond cleavage in lignin, especially the β-O-4 ether linkage cleavage played the dominant role in removing the biomass recalcitrance and contributing to the glucose yield enhancement. Meanwhile, enhanced deconstruction of LCCs was important in reducing wheat straw recalcitrance. The findings provided not only mechanistic insights into the Mn-enhanced biomass digestibility by fungus, but also a strategy for improving biological pretreatment efficiency of lignocellulose. Conclusion The mechanism of enhanced saccharification of biomass by Mn-assisted fungal treatment mainly through Cα-oxidative cleavage of β-O-4 ether linkages further led to the decreased condensation degree in lignin, as a result, biomass recalcitrance was significantly reduced by Mn addition. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document