organosolv pretreatment
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 57)

H-INDEX

35
(FIVE YEARS 7)

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 263
Author(s):  
Kinanthi Mondylaksita ◽  
Jorge A. Ferreira ◽  
Wiratni Budhijanto ◽  
Claes Niklasson ◽  
Mohammad J. Taherzadeh ◽  
...  

The glucan-rich fraction, hemicellulosic compounds-rich fraction, and a mixture of both fractions obtained from organosolv pretreatment of oil palm empty fruit bunch (OPEFB) were used as substrates to produce volatile fatty acids (VFAs) in acidogenic fermentation. In this study, the effects of medium adjustment (carbon to nitrogen ratio and trace elements supplementation) and methanogenesis inhibition (through the addition of 2-bromoethanesulfonate or by heat shock) to enhance VFAs yield were investigated. The highest VFA yield was 0.50 ± 0.00 g VFAs/g volatile solid (VS), which was obtained when methanogens were inhibited by heat shock and cultivated in a mixture of glucan-rich and hemicellulosic compounds-rich fractions. Under these conditions, the fermentation produced acetic acid as the only VFA. Based on the results, the mass balance of the whole process (from pretreatment and fermentation) showed the possibility to obtain 30.4 kg acetic acid and 20.3 kg lignin with a 70% purity from 100 kg OPEFB.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6754
Author(s):  
Maxwel Monção ◽  
Kateřina Hrůzová ◽  
Ulrika Rova ◽  
Leonidas Matsakas ◽  
Paul Christakopoulos

The use of residual biomass for bioconversions makes it possible to decrease the output of fossil-based chemicals and pursue a greener economy. While the use of lignocellulosic material as sustainable feedstock has been tried at pilot scale, industrial production is not yet economically feasible, requiring further technology and feedstock optimization. The aim of this study was to examine the feasibility of replacing woodchips with residual sawdust in biorefinery applications. Woodchips can be used in value-added processes such as paper pulp production, whereas sawdust is currently used mainly for combustion. The main advantages of sawdust are its large supply and a particle size sufficiently small for the pretreatment process. Whereas, the main challenge is the higher complexity of the lignocellulosic biomass, as it can contain small amounts of bark and cambium. Here, we studied the fractionation of birch sawdust by organosolv pretreatment at two different temperatures and for two different durations. We evaluated the efficiency of fractionation into the three main fractions: lignin, cellulose, and hemicellulose. The cellulose content in pretreated biomass was as high as 69.2%, which was nearly double the amount in untreated biomass. The obtained lignin was of high purity, with a maximum 4.5% of contaminating sugars. Subsequent evaluation of the susceptibility of pretreated solids to enzymatic saccharification revealed glucose yields ranging from 75% to 90% after 48 h but reaching 100.0% under the best conditions. In summary, birch sawdust can be successfully utilized as a feedstock for organosolv fractionation and replace woodchips to simplify and lower the costs of biorefinery processes.


Chemosphere ◽  
2021 ◽  
pp. 133003
Author(s):  
Ali Soltaninejad ◽  
MohammadHadi Jazini ◽  
Keikhosro Karimi

2021 ◽  
Author(s):  
Adarsh Arun ◽  
Jana Weber ◽  
Zhen Guo ◽  
Alexei Lapkin

As the chemical sector looks to decarbonize, one promising solution is the utilization of bio-feedstocks and biowaste to produce functional molecules. There is, therefore, great interest in understanding how and where to integrate these resources within chemical supply chains. To assist such efforts, screening methodologies relying on large reaction networks have recently been proposed.1,2 However, they are currently hindered by a lack of data for region-specific heterogenous raw materials compositions, as well as upstream pretreatments to isolate the important feedstocks. This study illustrates the workflow and data requirements of early stage biowaste stream evaluation through a case study on the waste landscape in and around the Singapore region. We first investigate biowaste sources that are available, stable in quantities, underutilized, pure, and yielding the feedstocks of interest. Oil palm empty fruit bunch (EFB), a lignocellulosic biowaste stream widely available in Malaysia and Indonesia, meets these criteria. We then simulate an ethanol organosolv pretreatment process for the fractionation of cellulose, lignin and xylose from EFB, and characterise the economic and environmental performances of the process through its exergy profile; this enables a link to chemical pathway identification in reaction networks. This study outlines the initial steps towards generating open datasets on biowaste for development of sustainable supply chains.


Author(s):  
Prajin Joseph ◽  
Mihaela Tanase Opedal ◽  
Størker T. Moe

AbstractThe H-factor, a parameter used extensively to analyze and predict the outcome of kraft pulping, is applied to organosolv pretreatment. The total solid yield after organosolv pretreatment fits well with the H-factor. The concept has been extended to apply to the individual biomass polymers using unique values for the activation energy for the depolymerization of the individual biomass polymers, giving the O-factor concept analogous to the P factor used for analyzing prehydrolysis kinetics. The results showed a linear relationship between ln(L0/L) and O-factor at an activation energy of 96 kJ/mol. The best linear fit for mannan and xylan degradation was obtained at O-factor activation energies of 104 kJ/mol and 142 kJ/mol, respectively, and the formation of furfural and 5-HMF gave a good linear fit using an O-factor activation energy of 150 kJ/mol. The O-factor is thus a useful concept for analyzing organosolv pretreatment when the temperature during pretreatment is not constant.


Sign in / Sign up

Export Citation Format

Share Document