A salt-free, zero-discharge and dyebath-recyclable circular coloration technology based on cationic polyelectrolyte complex for cotton fabric dyeing

Cellulose ◽  
2022 ◽  
Author(s):  
Wen-Yi Wang ◽  
Jia-Chi Chiou ◽  
Wan-Xue Chen ◽  
Jia-Li Yu ◽  
Chi-Wai Kan
2015 ◽  
Vol 122 ◽  
pp. 1-7 ◽  
Author(s):  
Marcus Leistner ◽  
Merid Haile ◽  
Sarah Rohmer ◽  
Anas Abu-Odeh ◽  
Jaime C. Grunlan

RSC Advances ◽  
2016 ◽  
Vol 6 (40) ◽  
pp. 33998-34004 ◽  
Author(s):  
Merid Haile ◽  
Marcus Leistner ◽  
Owais Sarwar ◽  
Courtney M. Toler ◽  
Robert Henderson ◽  
...  

Polyester–cotton (PECO) blends were rendered flame retardant by depositing a stable polyelectrolyte complex as a wash-durable coating.


2021 ◽  
Author(s):  
Wen-Yi Wang ◽  
Jia-Chi Chiou ◽  
Wan-Xue Chen ◽  
Jia-Li Yu ◽  
Chi-wai Kan

Abstract Textile industry is one of the most polluting industries due to the large quantities of dyeing wastewater it generates and discharges. Herein, we report an eco-friendly and sustainable circular coloration technology based on cationic polyelectrolyte complex to realise salt-free, zero-effluent-discharge circular dyeing for cotton fabrics with a recyclable dyebath by using a typical cationic polyelectrolyte polyhexamethylene biguanide (PHMB) bonded with anionic dyes. The cotton fabrics were first treated with PHMB and then dyed with three commercial acid dyes. Colour measurements show that the colour strength is controllable by adjustment of concentrations of both PHMB and the dyebath. The dyed fabric samples were found to have good/excellent colour levelness (< 0.49), and the colour fastness (Grade 3 ~ 5) was basically satisfactory and acceptable. The dyebath was proved to be recyclable for circular dyeing occurring at room temperature, which greatly reduces consumption of both water and heat energy for textile dyeing. Meanwhile, the dyed fabrics showed antimicrobial activity, particularly for the gram-positive S. aureus, which may help reduce the healthcare-associated infections that transmit through textiles. These results suggest that cationic polyelectrolyte-based circular dyeing could provide a promising and practicable strategy to address the pollution issue caused by wastewater generated in dyeing process in the textile industry.


2018 ◽  
Vol 2018 (1) ◽  
pp. 65-68
Author(s):  
Zhen Shi ◽  
Rui Dan ◽  
Longyun Hao ◽  
Weichao Chen ◽  
Ruyi Xie ◽  
...  

2017 ◽  
Vol 61 (5) ◽  
pp. 505051-505057 ◽  
Author(s):  
Zundong Liu ◽  
Kuanjun Fang ◽  
Hongguo Gao ◽  
Xiuming Liu ◽  
Jianfei Zhang ◽  
...  

2019 ◽  
Author(s):  
HanByul Chang ◽  
Paul Ohno ◽  
Yangdongling Liu ◽  
Franz Geiger

We report the detection of charge reversal induced by the adsorption of a cationic polyelectrolyte, poly(allylamine) hydrochloride (PAH), to buried supported lipid bilayers (SLBs), used as idealized model biological membranes. We observe changes in the surface potential in isolation from other contributors to the total SHG response by extracting the phase-shifted potential-dependent third-order susceptibility from the overall SHG signal. We demonstrate the utility of this technique in detecting both the sign of the surface potential and the point of charge reversal at buried interfaces without any prior information or complementary techniques<i>.</i>Furthermore, isolation of the second-order susceptibility contribution from the overall SHG response allows us to directly monitor changes in the Stern Layer. Finally, we characterize the Stern and Diffuse Layers over single-component SLBs formed from three different zwitterionic lipids of different gel-to-fluid phase transition temperatures (T<sub>m</sub>s). We determine whether the surface potential changes with the physical phase state (gel, transitioning, or fluid) of the SLB and incorporate 20 percent of negatively charged lipids to the zwitterionic SLB to investigate how the surface potential changes with surface charge.


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


Sign in / Sign up

Export Citation Format

Share Document