Habituation-Like Decrease of Acetylcholine-Induced Inward Current in Helix Command Neurons: Role of Microtubule Motor Proteins

2015 ◽  
Vol 35 (5) ◽  
pp. 703-712 ◽  
Author(s):  
Natal’ya A. Vasil’yeva ◽  
Galina B. Murzina ◽  
Arkady S. Pivovarov
2016 ◽  
Vol 113 (34) ◽  
pp. E4995-E5004 ◽  
Author(s):  
Wen Lu ◽  
Michael Winding ◽  
Margot Lakonishok ◽  
Jill Wildonger ◽  
Vladimir I. Gelfand

Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule–microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants.


1983 ◽  
Vol 50 (3) ◽  
pp. 658-670 ◽  
Author(s):  
A. D. McClellan

The buccal mass of the gastropod Pleurobranchaea is used during a regurgitation response that consists of a writhing phase interrupted by brief periodic bouts of a vomiting phase (17, 20). During transitions from writhing to vomiting, specific changes occur in the motor pattern (19, 20). Evidence is presented suggesting that at least some of the initiation or "command" neurons for vomiting reside in the buccal ganglia. The present paper examines the role of two candidate vomiting-initiation cells, the ventral white cells (VWC) and midganglionic cells (MC), in the buccal ganglia of isolated nervous systems. Stimulation of single VWCs activates a vomiting motor pattern, consisting in part of alternating buccal root activity. Furthermore, the VWCs fire in high-frequency bursts during episodes (i.e., bouts) of this same vomiting pattern. Mutual reexcitation between the VWCs and motor pattern generator (MPG) appears to produce the accelerated buildup and maintenance of vomiting rhythms. Brief stimulation of single MCs "triggers" bouts of a vomiting motor pattern, but the membrane potential of this cell is only modulated during this same pattern, at least in the isolated nervous system. It is proposed that in intact animals the MCs are activated by sensory inputs and briefly excite the VWC-MPG network, thereby turning on the mutual reexcitatory mechanism mentioned above and switching the output pattern. A general implication for gastropod research is that higher order neurons that activate buccal root activity cannot automatically be given the function of "feeding command neuron," as some cells clearly control other responses, such as vomiting.


2012 ◽  
Vol 66 ◽  
pp. 810-817 ◽  
Author(s):  
Anna Słońska ◽  
Rafał Polowy ◽  
Anna Golke ◽  
Joanna Cymerys

PLoS Genetics ◽  
2018 ◽  
Vol 14 (9) ◽  
pp. e1007649
Author(s):  
Gregory S. Barsh ◽  
Needhi Bhalla ◽  
Francesca Cole ◽  
Gregory P. Copenhaver ◽  
Soni Lacefield ◽  
...  

2001 ◽  
Vol 14 (1-2) ◽  
pp. 27-34 ◽  
Author(s):  
Silvia Romagnoli ◽  
Mauro Cresti ◽  
G. Cai

Sign in / Sign up

Export Citation Format

Share Document