Collinearity of homoeologous group 3 chromosomes in the genus Hordeum and Secale cereale as revealed by 3H-derived FISH analysis

2016 ◽  
Vol 24 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Lala Aliyeva-Schnorr ◽  
Nils Stein ◽  
Andreas Houben
1969 ◽  
Vol 11 (4) ◽  
pp. 803-809 ◽  
Author(s):  
Y. H. Lee ◽  
E. N. Larter ◽  
L. E. Evans

On the basis of its property to genetically compensate for chromosomes of homoeologous group 3 of wheat (T. aestiυum L. em. Thell.), it is suggested that Secale cereale L. chromosome I (as originally designated by Evans and Jenkins, 1960; later as VI by Riley and Macer, 1966) be redesignated as 3R. This would bring to a total of four the number of chromosomes of rye whose homoeologous relationship with wheat is known, viz. 2R, 3R, 5R and 6R.In addition to its compensating properties for group 3, 3R also exhibited partial homoeology for homoeologous group 1, specifically with chromosome ID. As a possible explanation for this behavior, it is suggested that 3R is a translocated chromosome constituting one of the three translocations known to differentiate the chromosome complements of S. cereale and S. montanum.


2009 ◽  
Vol 43 (2) ◽  
pp. 99-111
Author(s):  
S. Chebotar ◽  
P. Sourdille ◽  
E. Paux ◽  
F. Balfourier ◽  
C. Feuillet ◽  
...  

Genome ◽  
2005 ◽  
Vol 48 (4) ◽  
pp. 747-754 ◽  
Author(s):  
Eiko Himi ◽  
Ahmed Nisar ◽  
Kazuhiko Noda

Pigmentation of wheat grain and coleoptile is controlled by the R gene on chromosomes of the homoeologous group 3 and the Rc gene on chromosomes of the homoeologous group 7, respectively. Each of these genes is inherited monogenically. The pigment of grain has been suggested to be a derivative of catechin-tannin and that of coleoptile to be anthocyanin. These polyphenol compounds are known to be synthesized through the flavonoid biosynthesis pathway. We isolated 4 partial nucleotide sequences of the early flavonoid biosynthesis genes (CHS, CHI, F3H, and DFR) in wheat. The expression of these genes was examined in the developing grain of red-grained and white-grained wheat lines. CHS, CHI, F3H, and DFR were highly upregulated in the grain coat tissue of the red-grained lines, whereas there was no significant expression in the white-grained lines. These results indicate that the R gene is involved in the activation of the early flavonoid biosynthesis genes. As for coleoptile pigmentation, all 4 genes were expressed in the red coleoptile; however, DFR was not activated in the white coleoptile. The Rc gene appears to be involved in DFR expression. The possibility that wheat R and Rc genes might be transcription factors is discussed.Key words: flavonoid biosynthesis genes, R gene for grain color, Rc gene for coleoptile color, wheat.


2006 ◽  
Vol 47 (2) ◽  
pp. 93-98 ◽  
Author(s):  
Nobuyoshi Watanabe ◽  
Youko Fujii ◽  
Noriko Kato ◽  
Tomohiro Ban ◽  
Petr Martinek

2012 ◽  
Vol 41 (Special Issue) ◽  
pp. 208-211
Author(s):  
N. Watanabe ◽  
N. Takesada ◽  
Y. Fujii ◽  
P. Martinek
Keyword(s):  

see the full text


Genome ◽  
2014 ◽  
Vol 57 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Wanli Du ◽  
Jing Wang ◽  
Yuhui Pang ◽  
Liangming Wang ◽  
Jun Wu ◽  
...  

We isolated a wheat germplasm line, 22-2, which was derived from common wheat (Triticum aestivum ‘7182’) and Psathyrostachys huashanica ‘Keng’ (2n = 2x = 14, NsNs). Genomic composition and homoeologous relationships of 22-2 was analyzed using cytology, genomic in situ hybridization (GISH), EST–SSR, and EST–STS to characterize the alien chromatin in the transfer line. The cytological investigations showed that the chromosome number and configuration were 2n = 44 = 22 II. Mitotic and meiotic GISH using P. huashanica genomic DNA as the probe indicated that 22-2 contained a pair of P. huashanica chromosomes. The genomic affinities of the introduced P. huashanica chromosomes were determined by EST–SSR and EST–STS using multiple-loci markers from seven wheat homoeologous groups between the parents and addition line. One EST–SSR and 17 EST–STS markers, which were located on the homoeologous group 3 chromosomes of wheat, amplified polymorphic bands in 22-2 that were unique to P. huashanica. Thus, these markers suggested that the introduced Ns chromosome pair belonged to homoeologous group 3, so we designated 22-2 as a 3Ns disomic addition line. Based on disease reaction to mixed races (CYR31, CYR32, and Shuiyuan14) of stripe rust in the adult stages, 22-2 was found to have high resistance to stripe rust, which was possibly derived from its P. huashanica parent. Consequently, the new disomic addition line 22-2 could be a valuable donor source for wheat improvement depending on the excellent agronomic traits, especially, the introduction of novel disease resistance genes into wheat during breeding programs.


Genome ◽  
1988 ◽  
Vol 30 (4) ◽  
pp. 519-524 ◽  
Author(s):  
N. A. Tuleen ◽  
G. E. Hart

Isozyme markers were used to develop Triticum aestivum cv. Chinese Spring–Elytrigia elongata (= Agropyron elongatum, 2n = 14, genome E) disomic 3E and 5E addition lines. Subsequently, all possible lines containing 3E and 5E substituted for wheat homoeologues and several 3E and 5E ditelosomic addition and substitution lines were developed. Plants containing chromosome 3E substituted for wheat chromosomes of homoeologous group 3 are similar to 'Chinese Spring' in vigor and fertility while plants containing 3EL substituted for chromosomes of group 3 are less fertile than 'Chinese Spring'. This indicates that both arms of 3E are involved in sporophytic compensation. Plants containing chromosome 5E substituted for wheat chromosomes of homoeologous group 5 are as vigorous but less fertile than 'Chinese Spring'. 5EL (5A) and 5EL (5B) plants are lower in fertility than 5E (5A) and 5E (5B) plants, indicating that both arms of 5E are involved in sporophytic compensation. 5E (5D) and 5EL (5D) plants are similar in fertility. Male gametophytes in which 3E or 5E replaces a wheat homoeologue function at a lower rate than normal gametes.Key words: wheat, Triticum, Elytrigia elongata, alien chromosome addition lines.


1972 ◽  
Vol 14 (1) ◽  
pp. 39-42 ◽  
Author(s):  
C. J. Driscoll

Greater genetic complexity has been revealed for the control of bivalency in hexaploid wheat. A suppressor of homoeologous pairing has been detected on chromosome 3A. Thus, there are two suppressors in homoeologous group 3. The 3A suppressor may be homoeoallelic to either the suppressor on 3Dβ or the promoter, detected in this study, on 3Dα. Individually these two suppressors are less effective than the suppressor on the long arm of chromosome 5B; however, their combined effect is yet to be studied. This greater complexity suggests that hexaploid wheat may not be too dissimilar to other polyploids as regards genetic control of bivalency. The mode of action of these suppressors appears to be consistent with a heteromultimeric hypothesis.


1992 ◽  
Vol 83 (8) ◽  
pp. 931-939 ◽  
Author(s):  
K. M. Devos ◽  
M. D. Atkinson ◽  
C. N. Chinoy ◽  
C. J. Liu ◽  
M. D. Gale

Sign in / Sign up

Export Citation Format

Share Document