scholarly journals Corpora compilation for prosody-informed speech processing

Author(s):  
Alp Öktem ◽  
Mireia Farrús ◽  
Antonio Bonafonte

AbstractResearch on speech technologies necessitates spoken data, which is usually obtained through read recorded speech, and specifically adapted to the research needs. When the aim is to deal with the prosody involved in speech, the available data must reflect natural and conversational speech, which is usually costly and difficult to get. This paper presents a machine learning-oriented toolkit for collecting, handling, and visualization of speech data, using prosodic heuristic. We present two corpora resulting from these methodologies: PANTED corpus, containing 250 h of English speech from TED Talks, and Heroes corpus containing 8 h of parallel English and Spanish movie speech. We demonstrate their use in two deep learning-based applications: punctuation restoration and machine translation. The presented corpora are freely available to the research community.

2017 ◽  
Vol 62 (2) ◽  
Author(s):  
Gary Massey ◽  
Maureen Ehrensberger-Dow

AbstractMachines are learning fast, and human translators must keep pace by learning with, from and about them. Deep learning (DL) and neural machine translation (NMT) are set to change the reality of translation and the distributions of tasks. Although theoretical and practical courses on computer-aided and/or machine translation abound, less attention has been paid to DL and NMT in most translation programmes. The challenge for translation education is to give students the knowledge and toolkits to learn when and how to embrace the new technologies, and to exploit how and when the added value of human intuition, creativity and ethics can and should be deployed.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3700-3705

The extraordinary research in the field of unsupervised machine learning has made the non-technical media to expect to see Robot Lords overthrowing humans in near future. Whatever might be the media exaggeration, but the results of recent advances in the research of Deep Learning applications are so beautiful that it has become very difficult to differentiate between the man-made content and computer-made content. This paper tries to establish a ground for new researchers with different real-time applications of Deep Learning. This paper is not a complete study of all applications of Deep Learning, rather it focuses on some of the highly researched themes and popular applications in domains such Image Processing, Sound/Speech Processing, and Video Processing.


2019 ◽  
Author(s):  
Marc-Andre Schulz ◽  
B.T. Thomas Yeo ◽  
Joshua T. Vogelstein ◽  
Janaina Mourao-Miranada ◽  
Jakob N. Kather ◽  
...  

AbstractIn recent years, deep learning has unlocked unprecedented success in various domains, especially in image, text, and speech processing. These breakthroughs may hold promise for neuroscience and especially for brain-imaging investigators who start to analyze thousands of participants. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at currently available sample sizes. We systematically profiled the performance of deep models, kernel models, and linear models as a function of sample size on UK Biobank brain images against established machine learning references. On MNIST and Zalando Fashion, prediction accuracy consistently improved when escalating from linear models to shallow-nonlinear models, and further improved when switching to deep-nonlinear models. The more observations were available for model training, the greater the performance gain we saw. In contrast, using structural or functional brain scans, simple linear models performed on par with more complex, highly parameterized models in age/sex prediction across increasing sample sizes. In fact, linear models kept improving as the sample size approached ∼10,000 participants. Our results indicate that the increase in performance of linear models with additional data does not saturate at the limit of current feasibility. Yet, nonlinearities of common brain scans remain largely inaccessible to both kernel and deep learning methods at any examined scale.


Author(s):  
Prarthana Dutta ◽  
Naresh Babu Muppalaneni ◽  
Ripon Patgiri

The world has been evolving with new technologies and advances day-by-day. With the advent of various learning technologies in every field, the research community is able to provide solution in every aspect of life with the applications of Artificial Intelligence, Machine Learning, Deep Learning, Computer Vision, etc. However, with such high achievements, it is found to lag behind the ability to provide explanation against its prediction. The current situation is such that these modern technologies are able to predict and decide upon various cases more accurately and speedily than a human, but failed to provide an answer when the question of why to trust its prediction is put forward. In order to attain a deeper understanding into this rising trend, we explore a very recent and talked-about novel contribution which provides rich insight on a prediction being made -- ``Explainability.'' The main premise of this survey is to provide an overview for researches explored in the domain and obtain an idea of the current scenario along with the advancements published to-date in this field. This survey is intended to provide a comprehensive background of the broad spectrum of Explainability.


Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


Sign in / Sign up

Export Citation Format

Share Document