scholarly journals Machine learning: Implications for translator education

2017 ◽  
Vol 62 (2) ◽  
Author(s):  
Gary Massey ◽  
Maureen Ehrensberger-Dow

AbstractMachines are learning fast, and human translators must keep pace by learning with, from and about them. Deep learning (DL) and neural machine translation (NMT) are set to change the reality of translation and the distributions of tasks. Although theoretical and practical courses on computer-aided and/or machine translation abound, less attention has been paid to DL and NMT in most translation programmes. The challenge for translation education is to give students the knowledge and toolkits to learn when and how to embrace the new technologies, and to exploit how and when the added value of human intuition, creativity and ethics can and should be deployed.

2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2764
Author(s):  
Xin Yu Liew ◽  
Nazia Hameed ◽  
Jeremie Clos

A computer-aided diagnosis (CAD) expert system is a powerful tool to efficiently assist a pathologist in achieving an early diagnosis of breast cancer. This process identifies the presence of cancer in breast tissue samples and the distinct type of cancer stages. In a standard CAD system, the main process involves image pre-processing, segmentation, feature extraction, feature selection, classification, and performance evaluation. In this review paper, we reviewed the existing state-of-the-art machine learning approaches applied at each stage involving conventional methods and deep learning methods, the comparisons within methods, and we provide technical details with advantages and disadvantages. The aims are to investigate the impact of CAD systems using histopathology images, investigate deep learning methods that outperform conventional methods, and provide a summary for future researchers to analyse and improve the existing techniques used. Lastly, we will discuss the research gaps of existing machine learning approaches for implementation and propose future direction guidelines for upcoming researchers.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 694
Author(s):  
Xuejiao Pang ◽  
Zijian Zhao ◽  
Ying Weng

At present, the application of artificial intelligence (AI) based on deep learning in the medical field has become more extensive and suitable for clinical practice compared with traditional machine learning. The application of traditional machine learning approaches to clinical practice is very challenging because medical data are usually uncharacteristic. However, deep learning methods with self-learning abilities can effectively make use of excellent computing abilities to learn intricate and abstract features. Thus, they are promising for the classification and detection of lesions through gastrointestinal endoscopy using a computer-aided diagnosis (CAD) system based on deep learning. This study aimed to address the research development of a CAD system based on deep learning in order to assist doctors in classifying and detecting lesions in the stomach, intestines, and esophagus. It also summarized the limitations of the current methods and finally presented a prospect for future research.


Author(s):  
Gagan Kukreja

Almost all financial services (especially digital payments) in China are affected by new innovations and technologies. New technologies such as blockchain, artificial intelligence, machine learning, deep learning, and data analytics have immensely influenced all most all aspects of financial services such as deposits, transactions, billings, remittances, credits (B2B and P2P), underwriting, insurance, and so on. Fintech companies are enabling larger financial inclusion, changing in lifestyle and expenditure behavior, better and fast financial services, and lots more. This chapter covers the development, opportunities, and challenges of financial sectors because of new technologies in China. This chapter throws the light on opportunities that emerged because of the large population of 1.4 billion people, high penetration, and access to the latest and affordable technology, affordable cost of smartphones, and government policies and regulations. Lastly, this chapter portrays the untapped potentials of Fintech in China.


2019 ◽  
Vol 64 (1) ◽  
pp. 103-121 ◽  
Author(s):  
Begoña Rodríguez de Céspedes

Abstract Automation is affecting all spheres of our daily lives and humans are adapting both to the challenges that it poses and the benefits that it brings. The translation profession has also experienced the impact of new technologies with Language Service Providers adapting to changes (Presas/Cid-Leal/Torres-Hostench 2016; Sakamoto/Rodríguez de Céspedes/Evans/Berthaud 2017). Translation trainers are not oblivious to this phenomenon. There have indeed been efforts to incorporate the teaching of digital translation tools and new technologies in the translation classroom (Doherty/Kenny/Way 2012; Doherty/Moorkens 2013; Austermühl 2013; O’Hagan 2013; Gaspari/Almaghout/Doherty 2015; Moorkens 2017) and many translation programmes in Europe are adapting their curricula to incorporate this necessary technological competence (Rothwell/Svoboda 2017). This paper reflects on the impact that automation and, more specifically machine translation and computer assisted tools, have and will have on the future training of translators and on the balance given by translation companies to language and technological skills.


10.6036/10007 ◽  
2021 ◽  
Vol 96 (5) ◽  
pp. 528-533
Author(s):  
XAVIER LARRIVA NOVO ◽  
MARIO VEGA BARBAS ◽  
VICTOR VILLAGRA ◽  
JULIO BERROCAL

Cybersecurity has stood out in recent years with the aim of protecting information systems. Different methods, techniques and tools have been used to make the most of the existing vulnerabilities in these systems. Therefore, it is essential to develop and improve new technologies, as well as intrusion detection systems that allow detecting possible threats. However, the use of these technologies requires highly qualified cybersecurity personnel to analyze the results and reduce the large number of false positives that these technologies presents in their results. Therefore, this generates the need to research and develop new high-performance cybersecurity systems that allow efficient analysis and resolution of these results. This research presents the application of machine learning techniques to classify real traffic, in order to identify possible attacks. The study has been carried out using machine learning tools applying deep learning algorithms such as multi-layer perceptron and long-short-term-memory. Additionally, this document presents a comparison between the results obtained by applying the aforementioned algorithms and algorithms that are not deep learning, such as: random forest and decision tree. Finally, the results obtained are presented, showing that the long-short-term-memory algorithm is the one that provides the best results in relation to precision and logarithmic loss.


Intensification in the occurrence of brain diseases and the need for the initial diagnosis for ailments like Tumor, Alzheimer’s, Epilepsy and Parkinson’s has riveted the attention of researchers. Machine learning practices, specifically deep learning, is considered as a beneficial diagnostic tool. Deep learning approaches to neuroimaging will assist computer-aided analysis of neurological diseases. Feature extraction of neuroimages carried out using Artificial Neural Networks leads to better diagnoses. In this study, all the brain diseases are revisited to consolidate the methodologies carried out by various authors in the literature.


Language barrier is a common issue faced by humans who move from one community or group to another. Statistical machine translation has enabled us to solve this issue to a certain extent, by formulating models to translate text from one language to another. Statistical machine translation has come a long way but they have their limitations in terms of translating words that belongs to an entirely different context that is not available in the training dataset. This has paved way for neural Machine Translation (NMT), a deep learning approach in solving sequence to sequence translation. Khasi is a language popularly spoken in Meghalaya, a north-east state in India. Its wide and unexplored. In this paper we will discuss about the modeling and analyzing of a NMT base model and a NMT model using Attention mechanism for English to Khasi.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Syed Abdul Basit Andrabi ◽  
Abdul Wahid

Machine translation is an ongoing field of research from the last decades. The main aim of machine translation is to remove the language barrier. Earlier research in this field started with the direct word-to-word replacement of source language by the target language. Later on, with the advancement in computer and communication technology, there was a paradigm shift to data-driven models like statistical and neural machine translation approaches. In this paper, we have used a neural network-based deep learning technique for English to Urdu languages. Parallel corpus sizes of around 30923 sentences are used. The corpus contains sentences from English-Urdu parallel corpus, news, and sentences which are frequently used in day-to-day life. The corpus contains 542810 English tokens and 540924 Urdu tokens, and the proposed system is trained and tested using 70 : 30 criteria. In order to evaluate the efficiency of the proposed system, several automatic evaluation metrics are used, and the model output is also compared with the output from Google Translator. The proposed model has an average BLEU score of 45.83.


Sign in / Sign up

Export Citation Format

Share Document