Breast Cancer Prediction Using Deep Learning and Machine Learning Techniques

Author(s):  
MONIKA TIWARI ◽  
Rashi Bharuka ◽  
Praditi Shah ◽  
Reena Lokare
2020 ◽  
Vol 1 (5) ◽  
Author(s):  
Md. Milon Islam ◽  
Md. Rezwanul Haque ◽  
Hasib Iqbal ◽  
Md. Munirul Hasan ◽  
Mahmudul Hasan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 79-83
Author(s):  
Mrs N. Vanitha ◽  
R. Srimathi ◽  
J Haritha

The most frequently happening cancer among Indian women is breast cancer, which is the second most exposed cancer in the world. Here is a chance of fifty percent for fatality in a case as one of two women diagnosed with breast cancer die in the cases of Indian women.  With the rapid population growth, the risk of death incurred by breast cancer is rising exponentially. [2] Breast cancer is the second most severe cancer among all of the cancers already unveiled. A machine learning technique discovers illness which helps clinical staffs in sickness analysis and offers dependable, powerful, and quick reaction just as diminishes the danger of death. In this paper, we look at five administered AI methods named Support vector machine (SVM), K-closest neighbours, irregular woodlands, fake/ Artificial neural organizations (ANNs). The performance of the study is measured with respect to accuracy, sensitivity, specificity, precision, negative predictive value. Furthermore, these strategies were evaluated on exactness review region under bend and beneficiary working trademark bend. At last in this paper we analysed some of different papers to find how they are predicted and what are all the techniques they were used and finally we study the complete research of machine learning techniques for breast cancer.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


Sign in / Sign up

Export Citation Format

Share Document