Robust fitting of ellipses to non-complete and contaminated data

2000 ◽  
Vol 50 (S1) ◽  
pp. 347-354 ◽  
Author(s):  
G. Ososkov ◽  
I. Silin ◽  
N. Chernov
2006 ◽  
Vol 33 (5) ◽  
pp. 1222-1238 ◽  
Author(s):  
Martin King ◽  
Xiaochuan Pan ◽  
Lifeng Yu ◽  
Maryellen Giger

2011 ◽  
Vol 79 (2) ◽  
pp. 180-188 ◽  
Author(s):  
Christoph Römer ◽  
Kathrin Bürling ◽  
Mauricio Hunsche ◽  
Till Rumpf ◽  
Georg Noga ◽  
...  

Author(s):  
Jesper Kristensen ◽  
Isaac Asher ◽  
Liping Wang

Gaussian Process (GP) regression is a well-established probabilistic meta-modeling and data analysis tool. The posterior distribution of the GP parameters can be estimated using, e.g., Markov Chain Monte Carlo (MCMC). The ability to make predictions is a key aspect of using such surrogate models. To make a GP prediction, the MCMC chain as well as the training data are required. For some applications, GP predictions can require too much computational time and/or memory, especially for many training data points. This motivates the present work to represent the GP in an equivalent polynomial (or other global functional) form called a portable GP. The portable GP inherits many benefits of the GP including feature ranking via Sobol indices, robust fitting to non-linear and high-dimensional data, accurate uncertainty estimates, etc. The framework expands the GP in a high-dimensional model representation (HDMR). After fitting each HDMR basis function with a polynomial, they are all added together to form the portable GP. A ranking of which basis functions to use in the fitting process is automatically provided via Sobol indices. The uncertainty from the fitting process can be propagated to the final GP polynomial estimate. In applications where speed and accuracy are paramount, spline fits to the basis functions give very good results. Finally, portable BHM provides an alternative set of assumptions with regards to extrapolation behavior which may be more appropriate than the assumptions inherent in GPs.


Author(s):  
Olof Enqvist ◽  
Erik Ask ◽  
Fredrik Kahl ◽  
Kalle Åström

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Chao Zhao ◽  
Jinyan Yang

The standard boxplot is one of the most popular nonparametric tools for detecting outliers in univariate datasets. For Gaussian or symmetric distributions, the chance of data occurring outside of the standard boxplot fence is only 0.7%. However, for skewed data, such as telemetric rain observations in a real-time flood forecasting system, the probability is significantly higher. To overcome this problem, a medcouple (MC) that is robust to resisting outliers and sensitive to detecting skewness was introduced to construct a new robust skewed boxplot fence. Three types of boxplot fences related to MC were analyzed and compared, and the exponential function boxplot fence was selected. Operating on uncontaminated as well as simulated contaminated data, the results showed that the proposed method could produce a lower swamping rate and higher accuracy than the standard boxplot and semi-interquartile range boxplot. The outcomes of this study demonstrated that it is reasonable to use the new robust skewed boxplot method to detect outliers in skewed rain distributions.


2019 ◽  
Vol 17 (04) ◽  
pp. 1950028 ◽  
Author(s):  
Md. Ashad Alam ◽  
Osamu Komori ◽  
Hong-Wen Deng ◽  
Vince D. Calhoun ◽  
Yu-Ping Wang

The kernel canonical correlation analysis based U-statistic (KCCU) is being used to detect nonlinear gene–gene co-associations. Estimating the variance of the KCCU is however computationally intensive. In addition, the kernel canonical correlation analysis (kernel CCA) is not robust to contaminated data. Using a robust kernel mean element and a robust kernel (cross)-covariance operator potentially enables the use of a robust kernel CCA, which is studied in this paper. We first propose an influence function-based estimator for the variance of the KCCU. We then present a non-parametric robust KCCU, which is designed for dealing with contaminated data. The robust KCCU is less sensitive to noise than KCCU. We investigate the proposed method using both synthesized and real data from the Mind Clinical Imaging Consortium (MCIC). We show through simulation studies that the power of the proposed methods is a monotonically increasing function of sample size, and the robust test statistics bring incremental gains in power. To demonstrate the advantage of the robust kernel CCA, we study MCIC data among 22,442 candidate Schizophrenia genes for gene–gene co-associations. We select 768 genes with strong evidence for shedding light on gene–gene interaction networks for Schizophrenia. By performing gene ontology enrichment analysis, pathway analysis, gene–gene network and other studies, the proposed robust methods can find undiscovered genes in addition to significant gene pairs, and demonstrate superior performance over several of current approaches.


Sign in / Sign up

Export Citation Format

Share Document