Impacts of increased variability in precipitation and air temperature on net primary productivity of the Tibetan Plateau: a modeling analysis

2013 ◽  
Vol 119 (2) ◽  
pp. 321-332 ◽  
Author(s):  
Jian-Sheng Ye ◽  
James F. Reynolds ◽  
Guo-Jun Sun ◽  
Feng-Min Li
2017 ◽  
Vol 232 ◽  
pp. 235-246 ◽  
Author(s):  
Siyuan Wang ◽  
Bing Zhang ◽  
Qichun Yang ◽  
Guangsheng Chen ◽  
Bojuan Yang ◽  
...  

2020 ◽  
Vol 12 (7) ◽  
pp. 1223 ◽  
Author(s):  
Zhoutao Zheng ◽  
Wenquan Zhu ◽  
Yangjian Zhang

As a key biotic factor, phenology exerts fundamental influences on ecosystem carbon sequestration. However, whether spring phenology affects the subsequent seasonal ecosystem productivity and the underlying resource limitation mechanism remains unclear for the alpine grasslands of the Tibetan Plateau (TP). In this study, we investigated the direct and lagged seasonal responses of net primary productivity (NPP) to the beginning of growing season (BGS) along a precipitation gradient by integrating field observations, remote sensing monitoring and ecosystem model simulations. The results revealed distinct response patterns of seasonal NPP to BGS. Specifically, the BGS showed a significant and negative correlation with spring NPP (R = −0.73, p < 0.01), as evidenced by the direct boosting effects of earlier BGS on spring NPP. Moreover, spring NPP was more responsive to BGS in areas with more annual precipitation. The boosting effects of earlier BGS on NPP tended to weaken in summer compared with that in spring. Sequentially, BGS exhibited stronger positive correlation with autumn NPP in areas with less annual precipitation, which suggested the enhanced lagged suppressing effects of earlier spring phenology on ecosystem carbon assimilation during the later growing season under aggravated water stress. Overall, the strengthened NPP in spring was offset by its decrement in autumn, resulting in no obvious relationship between BGS and annual NPP (R = −0.34, p > 0.05) for the entire grasslands on the TP. The findings of this study imply that the lagged effects of phenology on the ecosystem productivity during the subsequent seasons should not be neglected in the future studies.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jiangwei Wang ◽  
Meng Li ◽  
Chengqun Yu ◽  
Gang Fu

More and more studies have focused on responses of ecosystem carbon cycling to climate change and phenological change, and aboveground net primary productivity (ANPP) is a primary component of global carbon cycling. However, it remains unclear whether the climate change or the phenological change has stronger effects on ANPP. In this study, we compared the effects of phenological change and climate change on ANPP during 2000–2013 across 36 alpine grassland sites on the Tibetan Plateau. Our results indicated that ANPP showed a positive relationship with plant phenology such as prolonged length of growing season and advanced start of growing season, and environmental variables such as growing season precipitation (GSP), actual vapor pressure (Ea), relative humidity (RH), and the ratio of GSP to ≥5°C accumulated temperature (GSP/AccT), respectively. The linear change trend of ANPP increased with that of GSP, Ea, RH, and GSP/AccT rather than phenology variables. Interestingly, GSP had the closer correlation with ANPP and meanwhile the linear slope of GSP had the closer correlation with that of ANPP among all the concerned variables. Therefore, climate change, mainly attributed to precipitation change, had a stronger effect on ANPP than did phenological change in alpine grasslands on the Tibetan Plateau.


2021 ◽  
Author(s):  
Dongfeng Li ◽  
Xixi Lu ◽  
Ting Zhang

&lt;p&gt;Sediment flux in cold environments is a crucial proxy to link glacial, periglacial, and fluvial systems and highly relevant to hydropower operation, water quality, and the riverine carbon cycle. However, the long-term impacts of climate change and multiple human activities on sediment flux changes in cold environments remain insufficiently investigated due to the lack of monitoring and the complexity of the sediment cascade. Here we examine the multi-decadal changes in the in-situ observed fluvial sediment fluxes from two types of basins, namely, pristine basins and disturbed basins, in the Tibetan Plateau and its margins. The results show that the fluvial sediment fluxes in the pristine Tuotuohe headwater have substantially increased over the past three decades (i.e., a net increase of 135% from 1985&amp;#8211;1997 to 1998&amp;#8211;2017) due to the warming and wetting climate. We also quantify the relative impacts of air temperature and precipitation on the increases in the sediment fluxes with a novel attribution approach and finds that climate warming and intensified glacier-snow-permafrost melting is the primary cause of the increased sediment fluxes in the pristine cold environment (Tuotuohe headwater), with precipitation increase and its associated pluvial processes being the secondary driver. By contrast, the sediment fluxes in the downstream disturbed Jinsha River (southeastern margin of the Tibetan Plateau) exhibit a net increase of 42% from 1966-1984 to 1985-2010 mainly due to human activities such as deforestation and mineral extraction (contribution of 82%) and secondly because of climate change (contribution of 18%). Then the sediment fluxes dropped by 76% during the period of 2011-2015 because of the operations of six cascade reservoirs since 2010. In an expected warming and wetting climate for the region, we predict that the sediment fluxes in the pristine headwaters of the Tibetan Plateau will continue to increase throughout the 21st century, but the rising sediment fluxes from the Tibetan Plateau would be mostly trapped in its marginal reservoirs.&lt;/p&gt;&lt;p&gt;Overall, this work has provided the sedimentary evidence of modern climate change through robust observational sediment flux data over multiple decades. It demonstrates that sediment fluxes in pristine cold environments are more sensitive to air temperature and thermal-driven geomorphic processes than to precipitation and pluvial-driven processes. It also provides a guide to assess the relative impacts of human activities and climate change on fluvial sediment flux changes and has significant implications for water resources stakeholders to better design and manage the hydropower dams in a changing climate. Such findings may also have implications for other cold environments such as the Arctic, Antarctic, and other high mountainous basins.&lt;/p&gt;&lt;p&gt;Furthermore, this research is under the project of &quot;Water and Sediment Fluxes Response to Climate Change in the Headwater Rivers of Asian Highlands&quot; (supported by the IPCC and the Cuomo Foundation) and the project of &quot;Sediment Load Responses to Climate Change in High Mountain Asia&quot; (supported by the Ministry of Education of Singapore). Part of the results are also published in Li et al., 2018 Geomorphology, Li et al., 2020 Geophysical Research Letters, and Li et al., 2021 Water Resources Research.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document